基数排序是一种非比较算法,它使用计数排序作为子例程按词典(字典)顺序对数据进行排序。它非常适合按数字对整数和按字符对字符串进行排序,它按数字值将元素分配到存储桶中,从最低有效数字到最高有效数字重复排序以获得最终顺序。
基数排序算法
在计算 sort时,我们发现我们可以根据数组中元素的频率对数组进行排序。但唯一的困难是,如果元素的范围非常大,那么使用计数排序效率不高。
因此,我们提出了基数排序,我们应用从最低有效数字到最高有效数字逐位计数排序。
基数排序是一种稳定的排序方法,它使用计数排序作为子例程。建议仅对正数使用基数排序,但是通过对标准基数排序算法进行一些修改,我们也可以对包含负数元素的数组进行排序。
基数排序以升序对数组进行排序所涉及的步骤是——
- 找到数组的最大元素,令其为max
- 找出其中的位数max, 随它去k。
- 对于每一个,我 i 范围从1到k,应用计数排序算法
每个元素的最低有效数字。如果任意元素小于我 i 数字考虑00在它的位置(因为29也可以表示为029)。
使用此方法,您还可以对适合32/64 位数据类型(int、float、double 等)的数字进行排序,这在计数排序算法中实际上是不可能实现的。
注意 -如果您还没有经历过计数排序,请注意一次,因为它是基数排序的先决条件,如果您想按降序对数组进行排序,请调整计数排序函数以使其排序数组按相反顺序排列。
基数排序算法示例
假设我们有一个数组a = [682,244,73,6,535,123]-
这里最大元素是682,有3 位数字,因此我们将对最低有效数字应用计数排序,即最后一位数 -
现在我们对数字的第二位应用计数排序,之后数字将根据最低有效数字 -
现在是时候根据以下内容对数字进行排序了从右起的数字,即最高有效数字。-
完成后,现在数组已按升序排序。
基数排序的伪代码
在伪代码中,我们将拥有函数RadixSort,它是实现基数排序功能的主要函数。
首先确定数组的最大元素,然后调用countingSort函数k时间在哪里k是上一步找到的最大元素的位数。
RadixSort(a[], n):
// Finding the maximum element
max=a[0]
For (i=1 to n-1):
If (a[i]>max):
max=a[i]
// Calling countingSort for
// k times using For loop.
For (div=1 to max/div>0):
countingSort(a, n, div)
div=div*10
基数排序的实现
为了实现基数排序算法,我们将使用两个函数 -
- radixSort -它需要一个数组(例如 a)及其大小(例如 n) 作为参数。首先,最大元素(max)存在于a确定后,然后使用变量div调用countingSort ,直到max / div > 0,其中,div乘以10每次迭代后。
- countSort -它需要一个数组(a), 尺寸 (n), 和div作为参数。计数排序将根据获得的结果对数组进行排序 (a[i] / div) %10。其中( a [ i ] / div ) % 10在每次迭代中对应于
的数字a[i],其中,1 ≤ k ≤ X。
这里x表示,出现的位数max。
基数排序的C/C++实现
// C++ code for Radix Sort
#include<bits/stdc++.h>
using namespace std;
// Counting Sort function
void countingSort(int *a,int n,int div){