e

TensorFlowis a free and open-source machine learning framework
developed by Google mainly used to build, train and deploy machine
learning and deep learning models. It supports numerous tasks such as
image recognition and natural language processing. It is available on
both CPU, GPU and TPU without hiccups and the easy-to-use in Keras API.

Import Tensor-Flow

import tensorflow as tf

Basic Operations

Command

a = th.eonstant(s)
b = th.constant(3)
c=a+b

print{c.numpy(})

Execution

In TenserFlow, a constant is an immutable
tensor that is meant to store values fixed
throughout the runtime of a program.

x = tiVariable(10)
x.assign(15) # Update value
print{x.numpy())

In TensorFlow, a variable is an object
representing a shared persistent state
modified during program execution.

Tensors

Command

tensor = tf.constant([[1, 2], [3, 4]])
print(tensor)

Execution

In TensorFlow, you can construct tensors using
various functions such as " tf.constant{}" for
constant value, "tf.zeros{] " to fill a tensor with
zeros and " tf.ones()” to fill the tensor with ones.

reshaped = tf.reshape(tensor, [4, 1])
print(reshaped)

Reshaping tensors in TensorFlow changes the
shape of a tensor without changing its data.

Optimizers

Command

optimizer =
tf.keras.optimizers.Adam(l
earning_rate=0.001)

Optimizers are a must-have in any TensorFlow
application for adjusting the weights in a model
towards minimizing the loss function during the

training process.

Loss Functions

Command

loss =
tf.keras.losses.MeanSquar
edError()

Execution

Loss functions are one of the most important things
when training a machine learning model in
TensorFlow as they represent the difference

between the actual target values and the predicted

values

Training and Evaluation

Command

Execution

model.compile(optimizer=optimizer,
loss=loss, metrics=["accuracy'])

Compiling a model in TensorFlow is one of the
essential steps that have to be performed before
training and evaluating the model.

model.fit(x_train, y_train,
epochs=10, batch_size=32)

model.evaluate(x_test, y_test)

Train a model in TensorFlow by importing
necessary libraries, loading your dataset,
preprocessing it (e.g., normalize pixel
values) defining the architecture of your neural
network using the Keras API.

To evaluate a model from TensorFlow, you would
use the “model.evaluate()” method, which
evaluates the model’s performance on the dataset
by computing the loss and optionally selected
metrics.

TensorFlow Datasets

Command

Execution

mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test)=
mnist.load_datal)
¥_train, x_test = x_train / 255.0, x_test [
255.0

we can use the function " tfds.load()” from the
TensorFlow Datasets (TFDS) library to load a
dataset in TensorFlow.

Saving and Loading Models

Command

Execution

model.save('model_name.h5')

You can save a model in TensorFlow with the
model.save() method, which saves the entire
architecture, weights, and optimizer state of the
model.

new model=
tf.keras.models.load_model{'model_
name.h5')

To load a model in TensorFlow, you might use
the following function
called tf. keras.models.load_model() which
allows you to read a saved model from the
storage for further usage,

GPU Utilization

print{"Num GPUs Available: ",
len(tf.config.list_physical_devices{'GPU'

1

checking GPU availability in TensorFlow

EpuUs =
tf.config.experimental list_physical_device
s|'GPU")
if gpus:
tf.config.experimental.set_memory_growth
{gpus[0], True)

This code snippet is used to enable the
growth of GPU memory in TensorFlow, which
allocates GPU memory incrementally as
needed instead of preallocating all available
memaory.,

TensorFlow Utilities

Command Execution

with tf.GradientTapel() as tape:
predictions = model{x_train)

loss_value = loss(y_train, tf.GradientTape in TensorFlow enables
predictions) . automatic differentiation, making it ideal for
grads = tape.gradient(loss_value, implementing custom training loops

model trainable_variables)
optimizer.apply_gradients{zip(grads,
model.trainable_variables))

Converting a TensorFlow Tensor into a NumPy
Array A NumPy array from a TensorFlow tensor

numpy_array = tensor.numpy(] can be acquired through the tensor object
using its * numpy()" method.

TensorFlow Lite

Command Execution
converter = To convert a TensorFlow model into TFLite,
:lf.illl:tle.TFé.ltlel:nnuel;ter.frnm_saved_mu you would use the ‘
€l model_name class " tflite.TFLiteConverter”.

tflite_model = converter.convert()

import . Creating Tensor
TensorFlow '

a = tf.constant(s)

b = tf.constant(3) tensor = tf.constant([[1, 2], [3. 4]])
import tensorflow as tf resulé=a+b print{"Tensor:\n", tensor.numpy())
print(tf. _version_) print{"AdditionResult:", Tensor:

result.numpyl()) [[12]

Addition Result: 8 =~ [34]]

Perform Matrix Operations

matrixL = tf.constant([[1, 2], 3, 4]] Ot
matrix2 = thconstant([[2, 0], [1, 2]]) Matrix Multiplication Result:
result = thmatmul{matrixl, matrix2) (4 4]
print("Matrix Multiplication Result:\n", result.numpy()) [10 8]
Build Neural Network
from tensorflow.keras.maodels import Sequential Out Pl.lt

from tensorflow.keras.layers import Densa

Model: "sequential®

Create a model

model = Sequential[Layer (type) Qutput Shape Param #
Densel 10, activation="relu’, input_shape=(2.]), dense {Dense) (None, 10) 10
Dense(l, activation="sigmuoid')

1) dense_1 (Dense) (Mone, 1} 11

Total params: 41
Compile the model

model.compile{optimizer='adam’, Trainable params: 41
loss="binary_crossentropy’, metrics=["accuracy']) Non-tralhable pacams:
Display the model summary
model.summary()

Training Model

import numpy as np

Output
Epoch 1/5

Generate some dummy data
¥ = np.random.rand(100, 2)

10/10 - 05 1ms/step - loss: 0.6951 - accuracy:

y = np.random.randint{0, 2, size={100,}) 0.5100
Train the model Easehizie
model.fit(X, y, epochs=5, batch_size=10) 10/10 - 0s Ims/step - loss: 0.6940 - accuracy:
0.5200
Making Model Prediction Save and Load Model
D |
! Utp ut i Save the model
Predict on new data Predictions: model.save('my_model.h5')
test_data = np.random.rand(5, 2) [19-59aszamn] rﬂ:ﬁ%ﬂm‘ﬂel‘

[0.50234926] tl‘;kemfmudels.lnad_mudelﬂ'm*_.r_ model.h
predictions = model.predictitest_data) [0.49029356] El;rzlil"lt: "Model loaded successfully!")
[0.52347356]

print{"Predictions:\n", predictions) e Out I:".lt
(. 1l - Model loaded successfully!

Use TensorFlow for customer Training Loops

Define a custom training loop
optimizer = tf.keras.optimizers.Adam()
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy()

@tf.function
def train_step(x, y):
with tf.GradientTape() as tape:
predictions = model(x, training=True)
loss = loss_fnly, predictions)
gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
return loss

Example loop
forepoch in range(3):
foriin range(100): # Assuming batch size 100
loss = train_step(x_train[i:i+100], y_train[i:i+100])
print(f"Epoch {epoch + 1}, Loss: {loss.numpy()}"}

Output

Epoch 1, Loss: 2.3095782
Epoch 2, Loss: 2308771
Epoch 3, Loss: 2.3081365

& GeeksforGeeks

