验证码图像识别

本文介绍了使用PIL库进行图像预处理,包括灰度化、降噪、二值化和分割,以优化图像并准备进行OCR识别。提到了灰度化方法的几种选择,如分量法、最大值法、平均值法和加权平均法,并展示了如何使用PIL进行二值化处理。最后,通过pytesseract库实现了验证码的识别,演示了完整的处理流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PIL+tesserocr

pip install pillow
pip install pytesseract

PIL进行预处理。经历步骤:

灰度化->降噪(去除噪声)->二值化->分割->识别

灰度处理

from PIL import Image
import numpy as np
import matplotlib.pyplot as plt

img = Image.open('1.png')
img = np.array(img)

print(img)
if img.ndim == 3:
    img = img[:,:,1] # 取三个通道中的第1个数据,编号从0开始
    print(img)

plt.imshow(img, cmap = plt.cm.gray_r)
plt.show()

PIL库自带方法实现灰度化

from PIL import Image

img = Image.open('1.png')
im_gray = img.convert('L')
im_gray.show()

稍微百度了下,发现灰度化的方法其实很多,如分量法、最大值法、平均值法、加权平均法,详情参考here

名称解释
分量法该方法最为简单,即在RGB三种颜色分量中,任意选取一种颜色作为灰度值
最大值法该方法是先找出每个像素RGB三种颜色分量的值,然后找到值最大的那个颜色,然后以此最大值作为灰度值
平均值法该方法是先找到像素的RGB三种颜色的分量值,最后置灰度值为三个分量值的平均值即可。
加权平均法因为人眼对每种颜色的敏感度不同,其中人眼对绿色敏感度最高,蓝色敏感度最低,所以我们可以使用加权平均的方法来求灰度值,公式如下: f ( x , y ) = a i R ( i , j ) + b i G ( i , j ) + c i B ( i , j ) f(x,y)=a _iR(i,j)+b_iG(i,j)+c_iB(i,j) f(x,y)=aiR(i,j)+biG(i,j)+ciB(i,j)

here也有相应的实现。

二值化

二值化的作用:
简单通俗的说:二值化的所用就是将图像分成黑和白(就不是上面的灰度图),更加有利于做图像处理判别

here深度好文。

验证码识别


import pytesseract
from PIL import Image
#获得图片
img = Image.open('1.png')
img.show()
# 图像灰度化处理
image = img.convert('L')

# 二值化
threshold = 125
table = []
for i in range(256):
    if i < threshold:
        table.append(0)
    else:
        table.append(1)

image = image.point(table, '1')
image.show()


# 识别
str = pytesseract.image_to_string(image, lang='eng', config='--psm 6 --oem 3 -c tessedit_char_whitelist=0123456789')
print(str)

安装参考:here

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梦否

文章对你有用?不妨打赏一毛两毛

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值