scipy中的csr_matrix

本文介绍了scipy中csr_matrix的使用方法,并通过一个4x4的稀疏矩阵示例展示了如何创建和打印csr_matrix。这种方法非常适合表达大规模的稀疏矩阵。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文链接:https://muzhan.blog.csdn.net/article/details/102889734
scipy中有个csr_matrix,可以简便地表达大规模稀疏矩阵。打个比方,对于1000*1000的二维矩阵,怎么表达呢?用一个numpy array去存储吗?其实,如果这个矩阵非常稀疏,比如特征矩阵等,可以用更简便的csr matrix去表达。

from scipy.sparse import csr_matrix
x = [0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3]
y = [0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3]
value = [1,0,3,0,0,0,0,1,0,9,1,0,0,0,0,1]
mat = csr_matrix((value,(x,y)),shape=(4,4))
print(mat)
print(mat.todense())

输出为:

  (0, 0)        1
  (0, 1)        0
  (0, 2)        3
  (0, 3)        0
  (1, 0)        0
  (1, 1)        0
  (1, 2)        0
  (1, 3)        1
  (2, 0)        0
  (2, 1)        9
  (2, 2)        1
  (2, 3)        0
  (3, 0)        0
  (3, 1)        0
  (3, 2)        0
  (3, 3)        1
[[1 0 3 0]
 [0 0 0 1]
 [0 9 1 0]
 [0 0 0 1]]

上面展示的是一个4x4情况下的csr matrix的表达形式。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值