社交网络数据集.mat文件的读取

本文介绍如何从MAT文件中加载特定数据,将其转换为邻接矩阵,并利用NetworkX进行处理。首先使用`scipy.io.loadmat`加载MAT文件,获取`sparse matrix`格式的网络数据,接着调用`.toarray()`方法将稀疏矩阵转换成密集型的ndarray,最后使用NetworkX读取ndarray格式的邻接矩阵。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

例如Wikipedia数据集:https://snap.stanford.edu/node2vec/POS.mat

得到的数据集即:POS.mat文件,我们需要对该文件进行读取。

mat_path = '../data_procress/ppi.mat'
load_mat = scio.loadmat(mat_path)  # Load MATLAB file.

输出load_mat为:

{'__header__': b'MATLAB 5.0 MAT-file Platform: posix, Created on: Thu Nov 12 18:54:12 2015', '__version__': '1.0', '__globals__': [], 'group': <3890x50 sparse matrix of type '<class 'numpy.float64'>'
	with 6640 stored elements in Compressed Sparse Column format>, 'network': <3890x3890 sparse matrix of type '<class 'numpy.float64'>'
	with 76584 stored elements in Compressed Sparse Column format>}

可以看见该字典中有network这个key,故而不妨读取该数据network = load_mat['network']得到<class 'scipy.sparse.csc.csc_matrix'>类型的数据,然后查看官网

toarray(self[, order, out])   # Return a dense ndarray representation of this matrix.

通过network = load_mat['network'].toarray()可以得到ndarray的数据,也就是网络的邻接矩阵表示。
然后就可以使用networkx进行读取操作。如:
完整代码:


import scipy.io as scio
import networkx as nx

def load_ppi_dataset():
    mat_path = '../data_procress/ppi.mat'
    load_mat = scio.loadmat(mat_path)  # Load MATLAB file.
    network = load_mat['network'].toarray()
    g = nx.from_numpy_matrix(network)
    return g

if __name__ == '__main__':
    g = load_ppi_dataset()
    print(list(g.nodes))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梦否

文章对你有用?不妨打赏一毛两毛

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值