平移不变性

在看大佬博客的时候,开篇看到了这句话:

卷积神经网络具有平移不变性,而图网络不具有该性质,因此不能直接做卷积操作。

    虽然的确经常看见,但是确实不怎么明白这个平移不变性具体而言指的是什么性质。所以这里简单理解和总结下。
    对于一幅图像,我们都知道可以使用3个通道以及固定大小的维度矩阵来表示,这里为了简化就考虑从图像可见本身出发(抽象为单通道的二维矩阵)。使用对于图像上的待检测的目标对象来说,对于这些点我们可以做一些平移、旋转、缩放等操作,最终不会影响对该目标对象的识别。这里的平移,也就是标题的平移不变性中的平移。平移对应这更加简单的变换,可以想象到对于图片中的目标对象,进行平移,还是可以识别出来对象。也就是我所理解的平移不变性。

在CNN中,使用卷积核来提取图片中特征,在图中平移卷积核+池化操作约等于平移不变性。

那为什么图网络不具有平移不变性呢?
不妨从类似的表示入手。
在图像中,每个点都有稳定的与之相接的四个点;在网络中,每个点的邻居的个数却是各不相同的。简单来说也就是图像中的结构是欧式空间的规则数据;在图网络中是非欧空间数据,是非规则数据。那么对于非欧空间数据,使用平移变化,那么多方向,该在哪个方向上做?当然这个不是重点,我的理解中,如果将图中一些节点平移后,那么必然丢失掉结构信息,那么对图的研究来说就是信息缺失,特征缺失。故而不具有平移不变性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梦否

文章对你有用?不妨打赏一毛两毛

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值