QIIME 2教程. 29参考数据库DataResources(2021.2)

数据资源 Data resources

https://docs.qiime2.org/2021.2/data-resources/

q2-feature-classifie使用的分类学分类器

Taxonomy classifiers for use with q2-feature-classifier

严重警告: 可与q2-feature-classifier一起使用的预训练分类器目前存在安全风险。如果使用预先训练的分类器(例如此处提供的分类器),您应该信任训练分类器的人和为您提供qza文件的人。这种安全风险将在未来版本的q2-feature-classifier中解决。

警告: 这些分类器使用scikit-learn 0.22.1进行训练,因此只能与scikit-learn 0.22.1一起使用。如果您使用的是QIIME的本地安装,则在使用这些分类器之前,应运行以下命令以确保使用正确版本的scikit-learn。如果您使用的是QIIME 2021.2虚拟机,则将安装scikit-learn 0.21.2并且您无需运行此命令。scqit-learn版本限制将在未来版本的q2-feature-classifier中放宽。

conda install --override-channels -c defaults scikit-learn=0.21.2

注意: 根据您的特定样品制备和测序参数,包括用于扩增的引物和序列读长的长度,分类器在训练时才能表现最佳。因此,一般来说,您应该遵循以下说明:用q2-feature-classifier训练特征分类器来训练您自己的分类学分类器(例如,来自下面的标记基因参考数据库)。

朴素贝叶斯分类器训练:

  • Silva 132按99%相似度聚类OTUs的 全长序列 (MD5: 6a9aa92fc12f6e26d17df18b3e603417)

  • Silva 132按99% OTUs聚类V4区515F/806R的序列 (MD5: a0925e86cda18829f84f03dab01ff589)

  • Greengenes 13_8按99%相似度聚类OTUs的全长序列 (MD5: abb3da907ef432bcaf70b65027983b23)
    -Greengenes 13_8按99%OTUs聚类V4区515F/806R的序列 (MD5: 21abd658436daf40f10c5a42ef9a8c66)

标记基因参考数据库

Marker gene reference databases

这些标记基因参考数据库已经被格式化并适合QIIME 1和QIIME 2的使用。如果你正在用QIIME 2分析平台来使用这些数据库,你在使用前必须先将其导入为“对象”。

Greengenes (16S rRNA)数据库的各种版本及下载链接如下:

  • 13_8 (most recent)

  • 13_5

  • 12_10

  • February 4th, 2011

在这二篇文献中你可以可以获得关于Greengenes更多的信息:DeSantis (2006)和McDonald (2012)。

Silva (16S/18S rRNA)数据库

关于SILVA数据库对于QIIME的兼容性以及商业和非商业用途授权的信息可以在这个网址中查询到:https://www.arb-silva.de/download/archive/qiime。

UNITE (fungal ITS)数据库

UNITE (fungal ITS)

所有关于该数据库的发行版本信息都可以在这个网址中查到:https://unite.ut.ee/repository.php。

如果要获得更多该数据库的信息请访问:https://unite.ut.ee。

微生物组生物信息学评估 Microbiome bioinformatics benchmarking

许多微生物组生物信息的校准比较研究是使用“模拟群落”进行的。模拟群落是一种人工制作的微生物群,这些微生物的种类和丰度是已知的,比如:Bokulich et al., (2013)和Caporaso et al.(2011)。公共模拟群落可以从这个链接下载mockrobiota,关于此模拟群落的信息在这篇文章中有详细介绍:Bokulich et al., (2016)。

公共微生物组数据 Public microbiome data

Qiita提供了进入许多公共微生物组数据的访问入口。如果你在寻找微生物组数据用于整合分析,那Qiita是一个很好的选择。

SEPP多序列比对参考数据库 reference databases

以下数据库旨在与q2-fragment-insertion一起使用,并直接从SEPP-Refs项目中构建。

  • Silva 128 SEPP参考数据库 (MD5: 7879792a6f42c5325531de9866f5c4de)

  • Greengenes 13_8 SEPP参考数据库 (MD5: 9ed215415b52c362e25cb0a8a46e1076)

译者简介

刘永鑫,博士,高级工程师,中科院青促会会员,QIIME 2项目参与人。2008年毕业于东北农业大学微生物学专业,2014年于中国科学院大学获生物信息学博士,2016年遗传学博士后出站留所工作,任工程师,研究方向为宏基因组数据分析。目前在Science、Nature Biotechnology、Protein & Cell、Current Opinion in Microbiology等杂志发表论文30余篇,被引3千余次。2017年7月创办“宏基因组”公众号,分享宏基因组、扩增子研究相关文章2400余篇,代表作有《扩增子图表解读、分析流程和统计绘图三部曲(21篇)》《微生物组实验手册》《微生物组数据分析》等,关注人数11万+,累计阅读2100万+。

Reference

https://docs.qiime2.org/2021.2

Evan Bolyen, Jai Ram Rideout, Matthew R. Dillon, Nicholas A. Bokulich, Christian C. Abnet, Gabriel A. Al-Ghalith, Harriet Alexander, Eric J. Alm, Manimozhiyan Arumugam, Francesco Asnicar, Yang Bai, Jordan E. Bisanz, Kyle Bittinger, Asker Brejnrod, Colin J. Brislawn, C. Titus Brown, Benjamin J. Callahan, Andrés Mauricio Caraballo-Rodríguez, John Chase, Emily K. Cope, Ricardo Da Silva, Christian Diener, Pieter C. Dorrestein, Gavin M. Douglas, Daniel M. Durall, Claire Duvallet, Christian F. Edwardson, Madeleine Ernst, Mehrbod Estaki, Jennifer Fouquier, Julia M. Gauglitz, Sean M. Gibbons, Deanna L. Gibson, Antonio Gonzalez, Kestrel Gorlick, Jiarong Guo, Benjamin Hillmann, Susan Holmes, Hannes Holste, Curtis Huttenhower, Gavin A. Huttley, Stefan Janssen, Alan K. Jarmusch, Lingjing Jiang, Benjamin D. Kaehler, Kyo Bin Kang, Christopher R. Keefe, Paul Keim, Scott T. Kelley, Dan Knights, Irina Koester, Tomasz Kosciolek, Jorden Kreps, Morgan G. I. Langille, Joslynn Lee, Ruth Ley, Yong-Xin Liu, Erikka Loftfield, Catherine Lozupone, Massoud Maher, Clarisse Marotz, Bryan D. Martin, Daniel McDonald, Lauren J. McIver, Alexey V. Melnik, Jessica L. Metcalf, Sydney C. Morgan, Jamie T. Morton, Ahmad Turan Naimey, Jose A. Navas-Molina, Louis Felix Nothias, Stephanie B. Orchanian, Talima Pearson, Samuel L. Peoples, Daniel Petras, Mary Lai Preuss, Elmar Pruesse, Lasse Buur Rasmussen, Adam Rivers, Michael S. Robeson, Patrick Rosenthal, Nicola Segata, Michael Shaffer, Arron Shiffer, Rashmi Sinha, Se Jin Song, John R. Spear, Austin D. Swafford, Luke R. Thompson, Pedro J. Torres, Pauline Trinh, Anupriya Tripathi, Peter J. Turnbaugh, Sabah Ul-Hasan, Justin J. J. van der Hooft, Fernando Vargas, Yoshiki Vázquez-Baeza, Emily Vogtmann, Max von Hippel, William Walters, Yunhu Wan, Mingxun Wang, Jonathan Warren, Kyle C. Weber, Charles H. D. Williamson, Amy D. Willis, Zhenjiang Zech Xu, Jesse R. Zaneveld, Yilong Zhang, Qiyun Zhu, Rob Knight & J. Gregory Caporaso#. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology. 2019, 37(8): 852-857. doi:10.1038/s41587-019-0209-9

猜你喜欢

10000+:菌群分析 宝宝与猫狗 梅毒狂想曲 提DNA发Nature Cell专刊 肠道指挥大脑

系列教程:微生物组入门 Biostar 微生物组  宏基因组

专业技能:学术图表 高分文章 生信宝典 不可或缺的人

一文读懂:宏基因组 寄生虫益处 进化树

必备技能:提问 搜索  Endnote

文献阅读 热心肠 SemanticScholar Geenmedical

扩增子分析:图表解读 分析流程 统计绘图

16S功能预测   PICRUSt  FAPROTAX  Bugbase Tax4Fun

在线工具:16S预测培养基 生信绘图

科研经验:云笔记  云协作 公众号

编程模板: Shell  R Perl

生物科普:  肠道细菌 人体上的生命 生命大跃进  细胞暗战 人体奥秘  

写在后面

为鼓励读者交流、快速解决科研困难,我们建立了“宏基因组”专业讨论群,目前己有国内外5000+ 一线科研人员加入。参与讨论,获得专业解答,欢迎分享此文至朋友圈,并扫码加主编好友带你入群,务必备注“姓名-单位-研究方向-职称/年级”。PI请明示身份,另有海内外微生物相关PI群供大佬合作交流。技术问题寻求帮助,首先阅读《如何优雅的提问》学习解决问题思路,仍未解决群内讨论,问题不私聊,帮助同行。

学习16S扩增子、宏基因组科研思路和分析实战,关注“宏基因组”

点击阅读原文,跳转最新文章目录阅读

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值