PAT 甲级 1072  Gas Station

本文介绍了一种基于图论和最短路径算法的最优加油站选址方案。通过将加油站和住宅视为图的顶点,利用迪杰斯特拉算法计算从每个候选加油站到所有住宅的最短距离,进而找出服务范围内所有住宅,且平均距离最小的加油站位置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1072 Gas Station (30 point(s))

A gas station has to be built at such a location that the minimum distance between the station and any of the residential housing is as far away as possible. However it must guarantee that all the houses are in its service range.

Now given the map of the city and several candidate locations for the gas station, you are supposed to give the best recommendation. If there are more than one solution, output the one with the smallest average distance to all the houses. If such a solution is still not unique, output the one with the smallest index number.

Input Specification:

Each input file contains one test case. For each case, the first line contains 4 positive integers: N (≤10​3​​), the total number of houses; M (≤10), the total number of the candidate locations for the gas stations; K (≤10​4​​), the number of roads connecting the houses and the gas stations; and D​S​​, the maximum service range of the gas station. It is hence assumed that all the houses are numbered from 1 to N, and all the candidate locations are numbered from G1 to GM.

Then K lines follow, each describes a road in the format

P1 P2 Dist

where P1 and P2 are the two ends of a road which can be either house numbers or gas station numbers, and Dist is the integer length of the road.

Output Specification:

For each test case, print in the first line the index number of the best location. In the next line, print the minimum and the average distances between the solution and all the houses. The numbers in a line must be separated by a space and be accurate up to 1 decimal place. If the solution does not exist, simply output No Solution.

Sample Input 1:

4 3 11 5
1 2 2
1 4 2
1 G1 4
1 G2 3
2 3 2
2 G2 1
3 4 2
3 G3 2
4 G1 3
G2 G1 1
G3 G2 2

Sample Output 1:

G1
2.0 3.3

Sample Input 2:

2 1 2 10
1 G1 9
2 G1 20

Sample Output 2:

No Solution

经验总结:

解这一题的方法就是,将加油站也当作顶点依次排在N个住宅之后,然后对每个加油站使用迪杰特斯拉算法,对于满足服务范围的加油站,取服务最短距离最大的那个,如果此条件相等,取到所有住宅平均距离最小的那个,再有相同者,按编号取最小的即可~(图最好使用邻接表,邻接矩阵在此题稍微慢了一些~)

AC代码

#include <cstdio>
#include <cstring>
#include <map>
#include <vector>
using namespace std;
const int maxn=1020;
const int INF=0x3fffffff;
int m,n,k,Ds,d[maxn];
bool flag[maxn];
struct node
{
	int v,w;
	node(int a,int b):v(a),w(b){}
};
vector<node> adj[maxn];
int convert(char str[])
{
	int x=0;
	int len=strlen(str);
	for(int i=0;i<len;++i)
	{
		if(str[i]!='G')
			x=x*10+str[i]-'0'; 
	}
	if(str[0]=='G')
		x+=n;
	return x;
}
void Dijkstra(int s)
{
	fill(d,d+maxn,INF);
	memset(flag,0,sizeof(flag));
	d[s]=0;
	int t=n+m;
	for(int i=1;i<=t;++i)
	{
		int min=INF,u=-1;
		for(int j=1;j<=t;++j)
			if(d[j]<min&&flag[j]==false)
			{
				min=d[j];
				u=j;
			}
		if(u==-1)
			return ;
		flag[u]=true;
		for(int j=0;j<adj[u].size();++j)
		{
			int v=adj[u][j].v;
			int w=adj[u][j].w;
			if(flag[v]==false&&d[u]+w<d[v])
				d[v]=d[u]+w;
		}
	}
}
int main()
{
	int a,b,c;
	char s1[4],s2[4];
	scanf("%d %d %d %d",&n,&m,&k,&Ds);
	for(int i=0;i<k;++i)
	{
		scanf("%s %s %d",s1,s2,&c);
		a=convert(s1);
		b=convert(s2);
		adj[a].push_back(node(b,c));
		adj[b].push_back(node(a,c));
	}
	int total,f,max_min=0,min_tol=INF,index=-1;
	for(int i=n+1;i<=n+m;++i)
	{
		Dijkstra(i);
		int min=INF;
		f=0;total=0;
		for(int j=1;j<=n;++j)
			if(d[j]>Ds)
			{
				f=1;
				break;
			}
			else
			{
				total+=d[j];
				if(d[j]<min)
					min=d[j];
			}
		if(f==0)
			if(min>max_min)
			{
				index=i-n;
				max_min=min;
				min_tol=total;
			}
			else if(min==max_min&&min_tol>total)
			{
				min_tol=total;
				index=i-n;
			}
	}
	if(index==-1)
		printf("No Solution\n");
	else
		printf("G%d\n%.1f %.1f\n",index,max_min*1.0,min_tol*1.0/n);
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值