PAT 甲级 1078  Hashing

本文详细解析了一道名为1078 Hashing的编程题目,介绍了使用二次探测解决散列表冲突的方法,强调了正确理解散列函数和处理非素数表大小的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1078 Hashing (25 point(s))

The task of this problem is simple: insert a sequence of distinct positive integers into a hash table, and output the positions of the input numbers. The hash function is defined to be H(key)=key%TSize where TSizeis the maximum size of the hash table. Quadratic probing (with positive increments only) is used to solve the collisions.

Note that the table size is better to be prime. If the maximum size given by the user is not prime, you must re-define the table size to be the smallest prime number which is larger than the size given by the user.

Input Specification:

Each input file contains one test case. For each case, the first line contains two positive numbers: MSize (≤10​4​​) and N (≤MSize) which are the user-defined table size and the number of input numbers, respectively. Then N distinct positive integers are given in the next line. All the numbers in a line are separated by a space.

Output Specification:

For each test case, print the corresponding positions (index starts from 0) of the input numbers in one line. All the numbers in a line are separated by a space, and there must be no extra space at the end of the line. In case it is impossible to insert the number, print "-" instead.

Sample Input:

4 4
10 6 4 15

Sample Output:

0 1 4 -

经验总结:

这一题,虽说不难......但是......还是很坑啊!
首先,不认识 Quadratic probing基本上就可以和AC说再见了,因为我们都知道平方探测法,但是谁知道这玩意的英文啊.....很容易就跑偏到线性探测了- -
其次,就是平方探测的方法了,公式是newaddress=(address+step*step)%TableSize,这里传统观念可能会忘记对TableSize进行取余。
还有,step需要增长到TableSize才可以结束,这就是结束条件的控制,可以理论证明,但是平时对于平方探测的认识太过肤浅,看了解析才知道= =
好了,就这么多吧,关于素数的处理,使用埃氏筛法就可以啦~,查找大于给定非素数的素数,二分查找貌似快一些?当然一个一个加应该也是可以的(´v`)~

AC代码

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <vector>
using namespace std;
const int maxn=10010;
int prime[maxn],pnum=0;
bool flag[maxn]={false},hashtable[maxn]={false};
void find_prime()
{
	flag[0]=flag[1]=true;
	for(int i=2;i<maxn;++i)
		if(flag[i]==false)
		{
			prime[pnum++]=i;
			for(int j=i+i;j<maxn;j+=i)
				flag[j]=true;
		}
}
int main()
{
	int n,m,t;
	find_prime();
	scanf("%d%d",&m,&n);
	if(flag[m]==true)
	{
		int *p=upper_bound(prime,prime+pnum,m);
		m=prime[p-prime];
	}
	for(int i=0;i<n;++i)
	{
		scanf("%d",&t);
		int address=t%m;
		if(hashtable[address]==false)
		{
			hashtable[address]=true;
			printf("%d",address);
		}
		else
		{
			int tpos,f=0;
			for(int j=1;j<=m;++j)
			{
				tpos=(address+j*j)%m;
				if(hashtable[tpos]==false)
				{
					hashtable[tpos]=true;
					printf("%d",tpos);
					f=1;
					break;
				}
			}
			if(f==0)
				printf("-");
		}
		printf("%c",i<n-1?' ':'\n');
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值