LeetCode 962. 最大宽度坡(单调栈)

本文解析了LeetCode上的坡度问题,通过分析数组中的坡度定义,提出了两种解题思路。一种是使用单调递减栈,另一种是逆序遍历结合单调递减栈的方法,最终实现了寻找数组中最大宽度坡的有效算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 题目

给定一个整数数组 A,坡是元组 (i, j),其中 i < jA[i] <= A[j]。这样的坡的宽度为 j - i

找出 A 中的坡的最大宽度,如果不存在,返回 0 。

示例 1:
输入:[6,0,8,2,1,5]
输出:4
解释:
最大宽度的坡为 (i, j) = (1, 5): A[1] = 0 且 A[5] = 5.

示例 2:
输入:[9,8,1,0,1,9,4,0,4,1]
输出:7
解释:
最大宽度的坡为 (i, j) = (2, 9): A[2] = 1 且 A[9] = 1.
 
提示:
2 <= A.length <= 50000
0 <= A[i] <= 50000

来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/maximum-width-ramp
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

2. 解题

在这里插入图片描述

[9,8,1,0,1,9,4,0,4,1]
class Solution {	//错误解
public:
    int maxWidthRamp(vector<int>& A) {
        deque<int> q;
        int maxlen = 0;
        for(int i = 0; i < A.size(); ++i)
        {
        	while(!q.empty() && A[q.back()] > A[i])
        		q.pop_back();
        	if(!q.empty())
        		maxlen = max(maxlen, i-q.front());
        	q.push_back(i);
        }
        return maxlen;
    }
};

  • 正序,单调递减栈(存储下标)(如果有大的,不需要入栈,因为前面的比它小,宽度更大)
  • 逆序遍历原数组,与栈顶比较
    在这里插入图片描述
class Solution {
public:
    int maxWidthRamp(vector<int>& A) {
        stack<int> s;
        int maxlen = 0, i;
        for(i = 0; i < A.size(); ++i)
        {
        	if(s.empty() || A[s.top()] > A[i])//单调递减栈
                s.push(i);
        }
        for(i = A.size()-1; i >= 0; --i)
        {
            while(!s.empty() && A[i] >= A[s.top()])
            {
                maxlen = max(maxlen, i-s.top());
                s.pop();
            }
        }
        return maxlen;
    }
};

136 ms 28.1 MB

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Michael阿明

如果可以,请点赞留言支持我哦!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值