计算机视觉与深度学习 | 视觉+激光雷达+惯惯性SLAM算法汇总(原理,公式,代码)

视觉+激光雷达+惯性

  • 1. LVI-SAM(Laser-Visual-Inertial SLAM)
  • 2. MMF-LVINS(Multi-Modal Feature-based LVINS)
  • 3. FAST-LIVO(Fast LiDAR-Inertial-Visual Odometry)
  • 4. CamVox
  • 5. Coco-LIC
  • 6. FAST-LIO2
  • 7. SLICT(Surfel-Based LiDAR-Inertial Mapping)
  • 总结与对比

以下是对视觉(Visual)、激光雷达(LiDAR)和惯性导航(IMU)融合的SLAM算法的汇总,涵盖原理、公式及开源项目链接:


1. LVI-SAM(Laser-Visual-Inertial SLAM)

  • 原理
    由MIT团队开发的紧耦合多传感器融合框架,包含视觉惯导(VIO)和激光惯导(LIO)两个子系统。VIO利用激光雷达提供深度信息,LIO依赖VIO的初始位姿进行点云匹配,两者通过因子图联合优化。当某一子系统失效时,另一系统仍可独立工作,提升鲁棒性。
  • 关键技术
    • 视觉闭环检测优化激光雷达地图。
    • 基于IMU预积分、滑窗优化的紧耦合策略。
  • 公式
    状态估计通过因子图优化,目标函数为:
    arg ⁡ min ⁡ x ( ∑ ∥ r imu ∥ Σ imu 2 + ∑ ∥ r lidar ∥ Σ lidar 2 + ∑ ∥ r visual ∥ Σ visual 2 ) \arg\min_{\mathbf{x}} \left( \sum \| \mathbf{r}_{\text{imu}} \|_{\Sigma_{\text{i
### 关于视觉和雷达融合的SLAM技术 #### 融合传感器的优势 在机器人技术和自动驾驶系统中,单个传感器存在局限性。为了提高定位精度和鲁棒性,通常采用多种传感器的数据融合方法来构建环境模型并估计位置。特别是对于复杂多变的真实场景而言,仅依靠一种类型的感知设备难以满足需求。 #### 视觉毫米波雷达的特点 - **视觉传感器**能够提供丰富的外观特征描述能力以及较高的分辨率图像信息,在静态物体识别方面表现优异;然而其性能容易受到光照条件变化的影响,并且计算量较大。 - **毫米波雷达**则具有全天候工作特性(不受天气状况影响),可以检测到远处的目标物距离速度等参数,但是它获取的空间结构细节较少[^1]。 #### 数据级融合策略 针对上述两种不同性质的感觉器官所采集来的原始观测值进行处理分析进而实现联合优化的过程即为数据级别的融合。具体来说就是通过算法将来自摄像头像素流同由雷达反射信号转换而成的距离矩阵相结合起来共同作用于状态更新环节之中: ```python def fuse_visual_radar(visual_data, radar_data): fused_state = {} # 对齐时间戳确保同步 aligned_timestamps = align_timestamps(visual_data['timestamps'], radar_data['timestamps']) for ts in aligned_timestamps: visual_features = extract_features_from_image(visual_data[ts]) distance_matrix = convert_to_distance_matrix(radar_data[ts]) combined_representation = merge_representations(visual_features, distance_matrix) updated_pose_estimate = update_slam_with_fusion(combined_representation) fused_state[ts] = { 'pose': updated_pose_estimate, 'environment_model': build_environment_model(updated_pose_estimate), } return fused_state ``` 此函数展示了如何在一个理想化的框架内完成一次完整的视觉加雷达输入下的即时定位建图流程。实际应用时还需要考虑更多因素如噪声抑制、异常值剔除等问题[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

北斗猿

代码有情,打赏有爱!谢谢!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值