#include<bits/stdc++.h>
using namespace std;
const int N=1e5+10,M=3e5+10;
int n,k;
int h[N],w[M],e[M],ne[M],idx;
typedef long long ll;
void add(int a,int b,int c){
w[idx]=c;
e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}
int vis[N],dist[N],cnt[N];
bool spfa(){
memset(dist,-0x3f,sizeof dist);
stack<int>q;//会Tle
q.push(0);
vis[0]=1;
dist[0]=0;
while(q.size()){
int p=q.top();
q.pop();
vis[p]=0;
for(int i=h[p];~i;i=ne[i]){
int j=e[i];
if(dist[j]<dist[p]+w[i]){
dist[j]=dist[p]+w[i];
cnt[j]=cnt[p]+1;
if(cnt[j]>=n+1)return 0;
if(!vis[j]){
vis[j]=1;
q.push(j);
}
}
}
}
return 1;
}
int main(){
scanf("%d%d",&n,&k);
memset(h,-1,sizeof h);
for(int i=1;i<=k;i++){
int a,b,x;
scanf("%d%d%d",&x,&a,&b);
if(x==1)add(a,b,0),add(b,a,0);
else if(x==2)add(a,b,1);
else if(x==3)add(b,a,0);
else if(x==4)add(b,a,1);
else if(x==5)add(a,b,0);
}
for(int i=1;i<=n;i++){
add(0,i,1);//每个人至少要有一个糖果
}
if(!spfa())puts("-1");
else {
ll res=0;
for(int i=1;i<=n;i++)res+=dist[i];
printf("%lld\n",res);
}
return 0;
}
Acwing 1169. 糖果 (差分约束 最小值 判断是否有解
最新推荐文章于 2024-04-07 10:04:10 发布

该博客介绍了如何利用Bellman-Ford算法解决含有负权边的有向图中最短路径问题。代码实现了一个SPFA(Shortest Path Faster Algorithm)的简化版本,处理了五种不同的边类型来模拟不同类型的糖果分配情况。在输入n个人和k个操作后,算法确保每个人至少得到一个糖果,并输出所有人最短路径总和。如果存在负权环导致无法求得最短路径,则输出-1。

1684

被折叠的 条评论
为什么被折叠?



