Acwing 1169. 糖果 (差分约束 最小值 判断是否有解

该博客介绍了如何利用Bellman-Ford算法解决含有负权边的有向图中最短路径问题。代码实现了一个SPFA(Shortest Path Faster Algorithm)的简化版本,处理了五种不同的边类型来模拟不同类型的糖果分配情况。在输入n个人和k个操作后,算法确保每个人至少得到一个糖果,并输出所有人最短路径总和。如果存在负权环导致无法求得最短路径,则输出-1。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

添加链接描述
在这里插入图片描述

#include<bits/stdc++.h>
using namespace std;
const int N=1e5+10,M=3e5+10;
int n,k;
int h[N],w[M],e[M],ne[M],idx;
typedef long long ll;
void add(int a,int b,int c){
    w[idx]=c;
    e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}
int vis[N],dist[N],cnt[N];
bool spfa(){
    memset(dist,-0x3f,sizeof dist);
    stack<int>q;//会Tle
    q.push(0);
    vis[0]=1;
    dist[0]=0;
    while(q.size()){
        int p=q.top();
        q.pop();
        vis[p]=0;
        for(int i=h[p];~i;i=ne[i]){
            int j=e[i];
            if(dist[j]<dist[p]+w[i]){
                dist[j]=dist[p]+w[i];
                cnt[j]=cnt[p]+1;
                if(cnt[j]>=n+1)return 0;
                if(!vis[j]){
                    vis[j]=1;
                    q.push(j);
                }
            }
        }
    }
    return 1;
}
int main(){
    scanf("%d%d",&n,&k);
    memset(h,-1,sizeof h);
    for(int i=1;i<=k;i++){
        int a,b,x;
        scanf("%d%d%d",&x,&a,&b);
        if(x==1)add(a,b,0),add(b,a,0);
        else if(x==2)add(a,b,1);
        else if(x==3)add(b,a,0);
        else if(x==4)add(b,a,1);
        else if(x==5)add(a,b,0);
    }
    for(int i=1;i<=n;i++){
        add(0,i,1);//每个人至少要有一个糖果
    }
    if(!spfa())puts("-1");
    else {
        ll res=0;
        for(int i=1;i<=n;i++)res+=dist[i];
        printf("%lld\n",res);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值