DeepSeek 下一代技术提前曝光!梁文锋署名论文获 ACL2025 最佳论文奖

戳下方名片,关注并星标

回复“1024”获取2TB学习资源!

👉体系化学习:运维工程师打怪升级进阶之路 4.0

—   特色专栏  —

MySQL/PostgreSQL/MongoDB

ElasticSearch/Hadoop/Redis

Kubernetes/Docker/DevOps

Kafka/RabbitMQ/Zookeeper

监控平台/应用与服务/集群管理

Nginx/Git/Tools/OpenStack

大家好,我是民工哥!

DeepSeek下一代技术提前曝光!

梁文锋署名论文获 ACL2025 最佳论文奖。

在2025年7月30日于奥地利维也纳举行的ACL 2025颁奖典礼上,由DeepSeek创始人梁文锋作为通讯作者、与北京大学等联合发表的论文《Native Sparse Attention: Hardware-Aligned and Natively Trainable Sparse Attention》荣获最佳论文奖。

这一荣誉不仅彰显了DeepSeek在人工智能领域的卓越贡献,也预示着下一代大模型技术的重大突破。

该论文提出的原生稀疏注意力(NSA)机制,通过算法与硬件的协同优化,实现了长文本处理速度的显著提升。

具体而言,NSA机制采用了一种动态分层的稀疏策略,通过三条并行的注意力分支协同工作:

  • 压缩注意力:负责捕捉粗粒度的全局信息模式,就像快速浏览全文抓住大意。

  • 选择性注意力:专注于序列中最重要的词块,相当于精读关键段落。

  • 滑动注意力:获取局部的上下文信息,确保细节不丢失。

这种设计最精妙的地方在于,它不是简单地丢弃信息,而是通过精心设计的算法平衡了计算密度。

更重要的是,整个架构针对现代GPU硬件进行了深度优化,实现了端到端的原生可训练模式。

在实际测试中,NSA机制展现出了惊人的速度优势。处理64k长度序列时,NSA在解码、前向传播和反向传播的全生命周期中都实现了显著的速度提升:

  • 解码阶段速度提升11.6倍

  • 前向传播提升9倍

  • 反向传播也有6倍的加速

速度快只是NSA的一面,更让人惊讶的是它在各项基准测试中的表现。在通用基准测试中,采用NSA预训练的27B参数模型在9个评测指标中有7个超越了全注意力基线。

特别是在推理相关的基准测试上,DROP提升了0.042,GSM8K提升了0.034,显示出稀疏注意力在强制模型聚焦关键信息方面的独特优势。

长文本处理能力的测试结果更是亮眼。在64k上下文的“大海捞针”测试中,NSA在所有位置都实现了完美的检索准确率。

在LongBench基准测试上,NSA取得了0.469的平均分,不仅超越了全注意力基线(+0.032),更是大幅领先其他稀疏注意力方法。

论文一作袁境阳在会上发表演讲,透露NSA技术可以把上下文长度扩展到1百万tokens,这一特性使其成为下一代大模型的理想选择。

结合论文发表于DeepSeek-R1推出之后,且实验设置中提到使用了DeepSeek-R1的蒸馏数据来微调新的模型,业界纷纷猜测,NSA技术将被应用于下一代DeepSeek-V4以及DeepSeek-R2。

DeepSeek提出的NSA机制,不仅解决了长文本处理的致命瓶颈,更揭示了AI技术未来发展的关键路径。

其硬件优化内核设计使实际推理速度与理论加速比高度吻合,彻底打破了“稀疏注意力推理效率低下”的行业魔咒。

此外,NSA机制还为教育、医疗等场景的AI应用打开了新空间,使长文本生成实时性得到显著提升。

👍 既然都看到这里了,如果觉得不错,随手点个赞、在看、转发三连吧,如果想第一时间收到推送,也可以给我个星标⭐~

公众号读者专属技术群

构建高质量的技术交流社群,欢迎从事后端开发、运维技术进群(备注岗位,已在技术交流群的请勿重复添加微信好友)。主要以技术交流、内推、行业探讨为主,请文明发言。广告人士勿入,切勿轻信私聊,防止被骗。

扫码加我好友,拉你进群

PS:因为公众号平台更改了推送规则,如果不想错过内容,记得读完点一下在看,加个星标,这样每次新文章推送才会第一时间出现在你的订阅列表里。点在看支持我们吧!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值