转载博客
http://blog.csdn.net/phoenix198425/article/details/78659060
多元函数带 Peano余项的Taylor公式的推广
设:
m,n∈ℕ,m,n≥1,
Dj=∂∂xj,
Djn=(∂∂xj)n=∂n∂xnj,
DimDjn=(∂∂xi)m(∂∂xj)n=∂m+n∂xmi∂xnj,
若
f(x):ℝn→ℝ,n∈ℕ,n≥1
在点
x k
阶可微,
k∈ℕ,k≥1,
在点
x
的某一邻域
U
上有定义,则
f(x+Δx)−f(x)=∑ki=11i!(∑nj=1(ΔxjDj))if(x)+o([r(Δx)]k),r(Δx)=||Δx||
证明:
(1) 令:
则:
且:
于是 k≥2 时:
因此
k≥2
时:
(2)
k≥2
时:
(3) 易知:
下面用归纳法证明命题。
1) k=1 时显然成立。
2) 设 k 时成立,即:
limΔx→0⃗ Rk(Δx)[r(Δx)]k
=limΔx→0⃗ f(x+Δx)−f(x)−∑ki=1h(t,i,f,Δx)[r(Δx)]k
=0
则 k+1 时, 由 微分中值定理的推广,
limΔx→0⃗ Rk+1(Δx)[r(Δx)]k+1
=limΔx→0⃗ R′k+1(θΔx)Δx{[r(θΔx)]k+1}′Δx
=limΔx→0⃗ ∑nt=1[Dtf(x+θΔx)−Dtf(x)−∑ki=1h(t,i,Dtf,θΔx)]Δxt(k+1)(r(θΔx))kr(Δx)
=∑nt=1limΔx→0⃗ Dtf(x+θΔx)−Dtf(x)−∑ki=1h(t,i,Dtf,θΔx)(r(θΔx))k⋅1k+1⋅Δxtr(Δx)
由:
limΔx→0⃗ θΔx=0
以及:
limθΔx→0⃗ Dtf(x+θΔx)−Dtf(x)−∑ki=1h(t,i,Dtf,θΔx)(r(θΔx))k=0
可得:
limΔx→0⃗ Dtf(x+θΔx)−Dtf(x)−∑ki=1h(t,i,Dtf,θΔx)(r(θΔx))k=0
又:
∀t∈ℕ,1≤t≤n,|Δxtr(Δx)|≤1
因此:
∑nt=1limΔx→0⃗ Dtf(x+θΔx)−Dtf(x)−∑ki=1h(t,i,Dtf,θΔx)(r(θΔx))k⋅1k+1⋅Δxtr(Δx)=0