转载至:http://blog.csdn.net/WangCaihua321/article/details/47298363
前言
关于softmax回归,有比较多的资料,本来没有必要再写一次的。下面是一些网址:
1)http://deeplearning.stanford.edu/wiki/index.php/Softmax%E5%9B%9E%E5%BD%92
2)http://ufldl.stanford.edu/wiki/index.php/Softmax_Regression
3)http://blog.csdn.net/acdreamers/article/details/44663305
4)http://www.cnblogs.com/fanyabo/p/4060498.html
还有很多, 不一一列出。
softmax 中的导数是怎样得到的?
为什么对网站上给出的目标函数直接求导是不对的?
为了解答这些问题,我决定写这篇文章。
注: 如果你认为我是错的,请让我知道,先谢过了。
问题提出
按定义(一般资料中的定义),softmax的似然函数为:
其中 k∈{1,2,⋯,K} k ∈ { 1 , 2 , ⋯ , K } , i∈{1,2,⋯,N} i ∈ { 1 , 2 , ⋯ , N } , Pk(xi) P k ( x i ) 按softmax概率定义有:
对似然函数取负对数,求匀值,引入正则项,得到目标函数/损失函数,如下:
这与网站上的一致,当然也是正确的。接下来是求导,如下:
其中 Pj(xi)|θTjxi P j ( x i ) | θ j T x i 是 Pj(xi) P j ( x i ) 对 θTjxi θ j T x i 的导数,如下
整理得,
这与网站上的结果不一致。网站上的结果为:
但是从推导过程来说好像没有什么错误,于是我开始怀疑网站上的结果是否正确。UFLDL Tutorial 中介绍过梯度检验方法。我按网站上的公式写目标函数和梯度进行验证,发现网站上的是对的,我认为正确的却不对,问题出在哪呢?
重新认识 softmax
按定义(一般资料中的定义),softmax 的似然函数为:
softmax 每次只能取一个值,有排它性。另一种等价定义为:
对应的目标函数为:
对这个目标函数求导为:
事实上,对于第二种似然函数,如果考虑softmax 每次只能取一个值,有排它性,即
I(y(i)=k)
I
(
y
(
i
)
=
k
)
只有一个为1,其它全为0。上面的目标函数与下面这个等价:
总之, 网站上给的结论都是正确的。
问题出在哪?
∑KleθTlxi
∑
l
K
e
θ
l
T
x
i
是归一化因子,与抽样无关。
I(y(i)=k)
I
(
y
(
i
)
=
k
)
只应影响与抽样相关的项,不应影响归一化因子
∑KleθTlxi
∑
l
K
e
θ
l
T
x
i
。所以,
要先变成:
再计算。