数学建模常用模型06 :时间序列预测

本文介绍了时间序列预测的重要性,并提到了ARMA模型在预测中的应用,包括AR、MA和ARMA模型的分类。通过实例展示了如何进行税收收入的预测,利用Daniel检验判断序列平稳性,并进行一阶差分操作。文章还提及了一款国产数据分析工具,支持一键式自动分析和多种统计模型。同时,给出了使用SPSS进行时间序列预测的步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给大家安利一款朋友开发的自研国产数据分析基础工具,一键式自动分析,自动生成分析模板,5分钟掌握主流61个统计类数学模型(几乎涵盖SPSS绝大部分功能),以及23个有监督机器学习(包括随机森林,SVM,XGBoost等)

PS:巨方便简单上手,貌似现在是免费

官网:www.mpaidata.com   mpai数据科学平台

 

时间序列预测与马尔科夫链预测互补,至少有2个点需要信息的传递,ARMA模型,周期模型,季节模型等

ARMA模型的全称是自回归移动平均(auto regression moving average)模型,它是目前最常用的拟合平稳序列的模型,它又可细分为AR模型(auto regression model)、MA模型(moving average model)和ARMA模型(auto regression moving average model)三大类。

例 税收作为政府财政收入的主要来源,是地方政府实行宏观调控、保证地区经济稳定增长的重要因素。各级政府每年均需预测来年的税收收入以安排财政预算。什么方法能够帮助地方政府有效地预测税收收入?下表是某地历年税收数据(单位:亿元)

表1 各年度的税收数据

年份

1

2

3

4

5

6

7

税收

15.2

15.9

18.7

22.4

26.9

28.3

30.5

年份

8

9

10

11

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值