路径规划 | 蚁群算法图解与分析(附ROS C++/Python/Matlab仿真)

本文详细介绍了蚁群算法的起源、基本概念和流程,以及如何在ROS中使用C++、Python和Matlab实现该算法。蚁群算法应用于路径规划,通过模拟蚂蚁寻找最短路径的行为寻找问题的最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0 专栏介绍

🔥附C++/Python/Matlab全套代码🔥课程设计、毕业设计、创新竞赛必备!详细介绍全局规划(图搜索、采样法、智能算法等);局部规划(DWA、APF等);曲线优化(贝塞尔曲线、B样条曲线等)。

🚀详情:图解自动驾驶中的运动规划(Motion Planning),附几十种规划算法


在这里插入图片描述

1 从蚁群觅食说起

蚁群算法(Ant Colony Optimization,ACO)的背景可以追溯到上世纪80年代末和90年代初。当时,Marco Dorigo和他的团队在研究分布式人工智能时,开始观察和研究蚂蚁的群体行为。他们发现,虽然单个蚂蚁的智能水平相对较低,但整个蚂蚁群体却能高效地完成复杂的任务,例如找到最短路径连接蚁巢和食物源。

在蚂蚁群体中,蚂蚁们会释放一种称为信息素的化学物质

评论 39
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr.Winter`

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值