小白入门深度学习 | 第五篇:数据不均衡的处理方法

本文介绍了处理深度学习数据不平衡的三种方法:权重平衡法通过调整样本权重来平衡数据;焦距损失法侧重于难以分类的样本,降低已良好分类样本的权重;过采样和欠采样通过直接调整样本数量来平衡类别。内容涵盖这些方法的原理和应用,特别提到了焦距损失在TensorFlow中的实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言:

权重平衡法

权重平衡法通过改变每个训练样本在计算损失时的权重来平衡我们的数据。通常,我们的损失函数中的每个样本和类具有相同的权重,即 1.0。但是有时候,我们可能希望某些更重要/更少的类别拥有更大的权重。

class_weight = {
   
   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

K同学啊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值