Pytorch入门实战 | 第P1周:实现mnist手写数字识别

11 篇文章 ¥29.90 ¥99.00
本文介绍了使用Pytorch实现MNIST手写数字识别的步骤,包括环境配置、数据导入与可视化、构建简单的CNN网络、训练与测试模型,以及结果的可视化。通过设置GPU、使用dataset和dataloader加载数据,构建包含卷积层、池化层和全连接层的网络,并采用自动梯度计算损失函数的梯度,进行优化更新权重。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Image Name

🏡 我的环境:

  • 语言环境:Python3.6.5
  • 编译器:jupyter lab
  • 深度学习环境:TensorFlow2.4.1
  • 数据集:参加训练营可获取

⏲往期文章:

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

K同学啊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值