Pytorch入门实战 | 第P7周:咖啡豆识别

11 篇文章 ¥29.90 ¥99.00
这篇博客介绍了如何在Pytorch中从零开始搭建VGG-16模型进行咖啡豆识别任务。内容涵盖设置GPU环境、数据导入与划分、模型构建、训练及测试函数编写,以及模型训练过程中的结果可视化。同时探讨了使用SGD优化器可能带来的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

🍺 要求:

  1. 自己搭建VGG-16网络框架
  2. 调用官方的VGG-16网络框架
  3. 如何查看模型的参数量以及相关指标

🍻 拔高(可选):

  1. 验证集准确率达到100%
  2. 使用PPT画出VGG-16算法框架图(发论文需要这项技能)

🔎 探索(难度有点大)

  1. 在不影响准确率的前提下轻量化模型
  • 目前VGG16的Total params是134,276,932

🏡 我的环境:

  • 语言环境:Python3.8
  • 编译器:Jupyter Lab
  • 深度学习环境:Pytorch
    • torch==1.12.1+cu113
    • torchvision==0.13.1+cu113
  • 数据集:🔗百度网盘

一、 前期准备

1. 设置GPU

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

K同学啊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值