Pytorch入门实战 | 第P9周:YOLOv5-Backbone模块实现

11 篇文章 ¥29.90 ¥99.00
本文介绍了如何在Pytorch中使用YOLOv5的Backbone模块搭建目标检测模型,从前期准备到模型训练,再到结果可视化。作者探讨了将YOLOv5网络结构应用于目标识别的可能性,并分享了自己的实验环境和数据集。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本次我将利用YOLOv5算法中的Backbone模块搭建网络。

YOLOv5是目标检测算法,是否可以尝试将其网络结构用在目标识别上,或进行改进形成一个全新的算法(类似之前介绍过的VGG1-6)。如果效果不错的话,还可以搞一篇期刊文章出来~

分享一张我自己绘制的YOLOv5_6.0版本的算法框架图,希望它可以有助于你完成本次探索~

图片1.png

🏡 我的环境:

  • 语言环境:Python3.8
  • 编译器:Jupyter Lab
  • 数据集:天气
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

K同学啊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值