【GAN小白入门】Semi-Supervised GAN 理论与实战

11 篇文章 ¥29.90 ¥99.00
本文介绍了Semi-Supervised GAN(SGAN),将生成对抗网络应用于半监督学习,通过强制生成器输出类别标签以提高分类性能和样本质量。SGAN在有限数据集上的实验显示其优于传统GAN,同时降低了训练时间。文章详细讲解了理论知识,并提供了代码实现步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在学习GAN的时候你有没有想过这样一个问题呢,如果我们生成的图像是带有标签的,例如数字0-9,那为什么要鉴别器判断输入图像为真假,而不直接判断图像是0-9中的哪一个数字呢,这样的鉴别效果不是更好吗?今天要讲解的SGAN将解答你的疑惑。

一、理论知识讲解

该算法将产生式对抗网络(GAN)拓展到半监督学习,通过强制判别器D来输出类别标签。我们在一个数据集上训练一个

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

K同学啊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值