12组实测:模型量化让GPU显存狂降75%(附完整优化代码)
实测 GPU 显存占用峰值:模型量化实战指南(附完整测试代码)
本文是「AI 大模型微调训练营」实战项目篇的模型量化核心章节,我们将通过12 组对比实验,深入剖析量化技术对 GPU 显存占用的优化效果。文末提供可直接运行的 Colab Notebook 代码。
一、量化技术背后的数学原理
在正式进入实测环节前,我们先理解两个核心公式:
1. 原始显存占用公式
显存占用 = 模型参数量 × 精度位数 × 2(梯度) / 8(字节转换)
以 LLaMA-7B 模型为例,FP32 精度训练时显存占用为:
7B × 32 × 2 / 8 = 56 GB
2. 量化后显存优化公式
显存优化比 = (原始精度位数 - 量化后位数) / 原始精度位数 × 压缩率因子
INT8 量化的理论优化比为:
(32 - 8)/32 × 0.85 ≈ 75% 显存节省
但实际工程中会遇到显存碎片化和计算图缓存问题,实测数据会有 5-15%