20.33 QLoRA微调实战:仅500条数据让语音识别飙升30%,1K数据对话模型暴增41.7%!

QLoRA微调实战:仅500条数据让语音识别飙升30%,1K数据对话模型暴增41.7%!

模型推理(以 QLoRA 微调后的 Whisper 和 ChatGLM3-6B 为例)

1. 微调后模型加载与部署

使用 Hugging Face PEFT 库加载 QLoRA 适配器,并与基础模型进行融合:

# 示例:Whisper-Large-v2 中文语音识别模型加载
from peft import PeftModel, PeftConfig
from transformers import WhisperForConditionalGeneration, pipeline

# 加载基础模型
base_model =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

少林码僧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值