记忆化递归:
(1)参数个数为n,申请一个n维数组(哈希表),确保能够根据参数直接访问数组(哈希表)的值
(2)函数体:
如果数组(哈希表)已经记录过参数对应的函数值,直接返回该值
在所有出现return前,return的值记录到数组(哈希表)中
隐形回溯:
如果写成dfs(现在状态+())
//括号里为下一个状态的参数,这里隐含了回溯
记忆化递归的必要性:
普通的递归可能会重复求解某一值,类似斐波那契数列。同样的子问题可能会被求解多次,这样就会很慢很慢很慢
解决方法:我们把历史求解(子问题)记录下来,如果下次需要求解子问题,那么直接取出就好。其时间复杂度为O(1)
根据n-1的状态推出第n个状态。
Leetcode 22. 括号生成(递归+去重)
当n=1时,返回()
递归求n-1时的结果,由左右括号配对可知每一个结果字符串的长度都为2*(n-1)。在每一个结果的每一个位置+“()”,再经map去重就是n时的结果。
vector<string> generateParenthesis(int n):
unordered_map<string,int>map;
vector<string>res;
if(n==1) return {"()"}
vector<string>vec = generateParenthesis(n-1);
string temp;
for(auto&s:vec)
for(int i=0;i<2*(n-1);i++)
//字符串的连接
temp=s.substr(0,i)+"()"+s.substr(i,2*(n-1));
if(map.find(temp)==map.end())
map[temp]=1;
res.push_back(temp);
return res;
做选择
在一个n×m的网格状地宫中,每个格子内有一件具有特定价值的宝贝。小明从地宫的左上角出发,只能向右或向下移动,直至到达右下角的出口。在移动过程中,当他经过一个格子时,若该格子中的宝贝价值大于他当前手中任意一件宝贝的价值,他可以选择拿取这件宝贝(也可以选择不拿)。目标是让小明在走出地宫时,手中恰好拥有k件宝贝。请你计算出小明在满足上述条件下,走到终点能够成功获取k件宝贝的不同行动方案数量。
dfs(1,1,-1,0)表示从起点到终点的结果。
由于只能向右或向下移动,所以移动一直是单向的,不需要有vis标志。
#include<bits/stdc++.h>
using namespace std;
int mat[60][60];
int n,m,k;
bool check(int x,int y)
{
return (x>=1&&x<=n&&y>=1&&y<=m);
}
long long dp[60][60][60][15];
long long dfs(int x,int y,int maxv,int cnt)
{
if(dp[x][y][maxv+1][cnt]!=-1)//注意1
return dp[x][y][maxv+1][cnt];
if(cnt>k)//如果手里有k+1件宝贝,越界,返回
return dp[x][y][maxv+1][cnt]=0;
if(!check(x,y))//越界,修正
return dp[x][y][maxv+1][cnt]=0;
if(x==n&&y==m)//到达终点
{
if(mat[x][y]>maxv)//能拿
{
if(cnt==k)//如果手里已经有看件宝贝
return dp[x][y][maxv+1][cnt]=1;//在终点处选择不拿有一种方案
else if(cnt==k-1)return dp[x][y][maxv+1][cnt]=1;//在终点处选择拿,有一种方案
else return dp[x][y][maxv+1][cnt]=0;
}
else//不能拿
{
if(cnt==k)return dp[x][y][maxv+1][cnt]=1;//如果手里已经有k件宝贝,选择不拿,有一种方案
else return dp[x][y][maxv+1][cnt]=0;
}
}
if(mat[x][y]>maxv)
return dp[x][y][maxv+1][cnt]=dfs(x+1,y,mat[x][y],cnt+1)+dfs(x,y+1,mat[x][y],cnt+1)+dfs(x+1,y,maxv,cnt)+dfs(x,y+1,maxv,cnt);
else
return dp[x][y][maxv+1][cnt]=dfs(x+1,y,maxv,cnt)+dfs(x,y+1,maxv,cnt);
}
int main()
{
cin>>n>>m>>k;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
cin>>mat[i][j];
}
}
memset(dp,-1,sizeof(dp));//memset的用法
cout<<dfs(1,1,-1,0)%1000000007 ;//注意2,要取模
}
K进制数
具体来说,给定整数N表示数的位数,以及基数K(K≥2),需要确定并求出所有满足以下条件的K进制数的数量:数字总共有N位;在这N位的K进制表示中,任何相邻的两位数字都不会同时是0。 给定两个数N和K, 要求计算包含N位数字的有效K-进制数的总数。
int dfs(int idx,bool pre){
if(dp[idx][pre]!=-1)return dp[idx][pre];
if(idx==n){
if(pre)return dp[idx][pre]=k-1;
else return dp[idx][pre]=k;
}
if(pre)
return dp[idx][pre] = (k-1)*dfs(idx+1,false);
else
return dp[idx][pre] = (k-1)*dfs(idx+1,false)+dfs(idx+1,true)
}
dfs(1,0);
剪格子
方格分割
6x6的方格,沿着格子的边线剪开成两部分。 要求这两部分的形状完全相同。
试计算: 包括这 3种分法在内,一共有多少种不同的分割方法。 注意:旋转对称的属于同一种分割法。
蓝桥杯2013c++真题:振兴中华
深度优先搜索: 岛屿的周长
如果陆地有4个邻接陆地,那么这个陆地周长算为0;如果陆地有3个邻接陆地,那么这个陆地周长算1;如果陆地有2个邻接陆地,那么这个陆地周长算2;如果陆地有1个邻接陆地,那么这个陆地周长算3;如果陆地没有邻接陆地,那么这个路径周长算4。
vector<vector<int>>G;
int n, m;
bool vis[105][105];
int res=0;
void dfs(int x, int y)
if (!(x >= 0 && y >= 0 && x < n && y < m))return;
if (G[x][y]==0)return
if (vis[x][y])return
int cnt = 0
vis[x][y] = true
if (x - 1 >= 0 && G[x - 1][y] == 1)cnt++
if (x + 1 < n && G[x + 1][y] == 1)cnt++
if (y - 1 >= 0 && G[x][y - 1] == 1)cnt++
if (y + 1 < m && G[x][y + 1] == 1)cnt++
res+=4-cnt
dfs(x + 1, y)
dfs(x - 1, y)
dfs(x, y + 1)
dfs(x, y - 1)
int islandPerimeter(vector<vector<int>>& grid)
G = grid;
n = grid.size();
m = grid[0].size();
memset(vis, 0, sizeof(vis));
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
if (G[i][j] == 1)
dfs(i,j);
break;