锁在我们的日常开发可谓用得比较多。通常用来解决资源并发的问题。特别是多机集群情况下,资源争抢的问题。但是,很多新手在锁的处理上常常会犯一些问题。今天我们来深入理解锁。
一、Redis 锁错误使用之一
我曾经见过有的项目把查询结果存储到 Redis 当中时的伪代码如下:
$redis = new \Redis('127.0.0.1', 6379);
$cacheKey = 'query_cache';
$result = $redis->get($cacheKey);
if ($result) { // 缓存有效则直接返回。
return $result;
} else { // 缓存失效则重新获取并存储到 Redis。
$mysqlResult = [];
$redis->set($cacheKey, json_encode($mysqlResult), 3600);
return $mysqlResult;
}
初看代码并不会发现问题所在。通常情况下,当服务器资源压力非常小的时候,这段代码不会有任何问题。并且,真的可以提升服务器吞吐性能。
假如,这个位置的代码出现了单点压力呢?比如,这个功能是统计结果,查询数据库需要花 5s。而且,由于该功能比较常用,单位时间内达到了 1000 次/秒。
这时就会出现并发穿透问题。
1000 个请求同时到达这个程序位置,都去读取缓存是否存在。假如此时缓存不存在。这 1000 个请求都会得到不存在的结果。并且都会执行到去数据库取缓存结果的步骤。同时也会把结果重写到 Redis。
那就导致了这一瞬间单点压力导致穿透到数据库,造成数据库压力瞬间到达峰值。如果我们的数据库的性能处理不了这么大的压力,就会导致数据库服务器 CPU 直接爆满。响应给前端的数据就会陷入停顿状态。
所以,这段代码是不正确的锁使用。
二、Redis 锁错误使用之二
在第一点中,我们发现了问题。于是,就有人想着去优化它。于是就有了下面的代码:
$redis = new \Redis('127.0.0.1', 6379);
$lockKey = 'query_cache_lock'; // 锁专用的 KEY。
$cacheKey = 'query_cache'; // 存储查询结果的 KEY。
$res