【深度学习】手把手教你使用CatBoost进行回归(全套Python源码)

 

目录

什么是CatBoost

CatBoost如何工作?

使用CatBoost实现回归

安装软件包

 导入库和数据集

 加载数据集并检索信息

探索性数据分析

分类计数

数值分布

数据预处理

独热编码分类列 

分割数据

模型开发

 预测

结论


        在本文中,我们将了解最先进的机器学习模型之一:Catboost。这里的“cat”代表“categorical”(分类的),这意味着当你的数据包含许多分类列时,该算法非常高效。

什么是CatBoost

        CatBoost(分类提升)是由Yandex开发的高性能、开源梯度提升框架。它旨在解决广泛的机器学习任务,包括分类、回归和排序,尤其侧重于高效处理分类特征。CatBoost在处理结构化数据时,因其速度、准确性和易用性而脱颖而出。

CatBoost如何工作?

        CatBoost是一种高性能的梯度提升技术,适用于机器学习任务,特别是在涉及结构化输入的情况下。梯度提升作为一种集成学习技术,构成了其主要工作原理的基础。CatBoost首先

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

干了这一碗BUG

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值