自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

梦想起飞的地方

念念不忘 必有回响

  • 博客(447)
  • 资源 (19)
  • 收藏
  • 关注

原创 【搜索目录】本专栏所有文章导航,可直接搜索

原创 【深度学习】Python实现演员-评论家算法(全源码) - 2025-06-07 18:45:09

2025-06-08 16:14:34 676

原创 【项目实战】使用深度学习模型进行人类活动识别(Python源码)

本文探讨了利用深度学习提升人体活动识别(HAR)准确性的方法。研究采用LSTM网络处理智能手机传感器数据,通过UCI数据集分析步行、上下楼梯等日常活动。实验采用双LSTM层架构,经50轮训练后准确率达97%,混淆矩阵验证了模型的有效性。该技术可应用于健康监测、智能家居等领域,展现了深度学习在时序数据处理中的优势。

2025-08-23 13:14:55 139

原创 【项目实战】使用Python - Mediapipe、OpenCV进行手部面部检测(Python源码)

本文介绍了使用MediaPipe和OpenCV库进行实时面部和手部关键点检测的方法。通过MediaPipe的Holistic模型,可以获取468个面部特征点及每只手21个特征点。文章详细说明了环境配置、模型初始化参数设置,并提供了完整的代码实现,包括视频流处理、关键点绘制和FPS计算等功能。这套方案可应用于手语识别、疲劳检测等计算机视觉场景,为开发者提供了一套高效的开箱即用解决方案。

2025-08-23 12:57:24 211

原创 【项目实战】机器学习中使用OpenCV进行年龄检测(Python源码)

本文介绍了基于深度学习的图像年龄识别系统开发。该系统通过OpenCV的DNN模块,整合人脸检测和年龄预测模型,实现实时视频流分析。研究发现采用年龄范围分类法比具体年龄预测更准确。系统工作流程包括视频输入、人脸检测、特征提取、年龄预测和结果可视化。文章详细阐述了模型实现步骤,包括预训练模型加载、人脸检测函数设计、年龄预测方法以及图像处理流程。实验表明系统能准确识别4-6岁儿童年龄,并可通过集成性别分类等功能进一步优化性能。

2025-08-23 12:43:18 9

原创 【项目实战】在Python中使用TensorFlow预测燃油效率(Python源码)

本文基于TensorFlow框架构建汽车燃油效率预测模型,使用Auto MPG数据集(392条记录)分析发动机参数与MPG的关系。研究通过数据清洗(处理"马力"缺失值)、特征分析(发现排量与马力高度相关)和可视化探索(气缸数/产地对MPG影响),建立含256神经元双层的神经网络模型。模型经50轮训练后,采用MAE和MAPE评估指标,结果显示验证集性能良好。该研究为汽车燃油经济性预测提供了有效方法,对环保汽车设计具有参考价值。

2025-08-18 22:10:45 18

原创 【项目实战】机器学习进行使用贷款审批预测(Python源码)

本文介绍了一个基于机器学习的贷款审批预测系统。通过分析申请人婚姻状况、教育背景、收入等13个特征,系统可自动评估贷款申请资质。研究采用标签编码处理分类变量,使用随机森林、K近邻等算法进行训练,其中随机森林在测试集上达到82.5%的准确率。数据预处理包括缺失值填充和热力图可视化,揭示了收入与贷款金额的相关性。该模型可有效简化银行审批流程,提高贷款决策效率。

2025-08-18 21:53:09 18

原创 【项目实战】葡萄酒质量预测(Python源码)

本文基于葡萄酒质量数据集,采用机器学习方法预测葡萄酒品质。通过数据预处理包括缺失值填充、特征选择和标准化处理,构建了逻辑回归、XGBoost和SVM三种分类模型。结果表明,XGBoost在验证集上表现最佳,准确率达80.46%。研究提供了完整的分析流程,从EDA到模型评估,为葡萄酒质量预测提供了有效方法。

2025-08-09 22:34:55 25

原创 【人工智能】Python实现双向循环神经网络(源码)

摘要:双向循环神经网络(BRNN)是对传统RNN的改进架构,通过同时正向和反向处理序列数据,能有效融合上下文信息。BRNN包含两个独立隐藏层,分别从不同方向处理输入序列并组合输出,显著提升模型准确性。本文详细介绍了BRNN的工作原理、Keras实现流程及其在IMDb情感分析中的应用,包括数据预处理、模型构建、训练评估等环节。虽然BRNN在NLP任务中表现优异,但也存在计算成本高、训练时间长等挑战。该技术广泛应用于情感分析、机器翻译、语音识别等领域,特别适合需要全局上下文理解的任务。

2025-06-28 15:44:27 202 1

原创 【人工智能】自然语言处理中的双向长短期记忆网络(LSTM)的应用

本文介绍了双向长短期记忆网络(BiLSTM)的原理及其在情感分析中的应用。BiLSTM通过前向和后向两个LSTM层处理序列数据,能有效捕捉上下文信息。文章详细展示了使用TensorFlow构建BiLSTM模型进行IMDB电影评论情感分析的过程,包括数据加载、文本向量化、模型构建与训练。虽然模型在训练集上达到95.92%准确率,但在验证集上出现78%准确率和过拟合现象,建议采用正则化或简化模型来提升泛化能力。该案例为自然语言处理任务提供了实用参考。

2025-06-28 13:45:51 59

原创 【项目实战】Python实现猜数字(Cows and Bulls)游戏(源码)

摘要:猜数字游戏(Cows and Bulls)是一款经典的数字推理游戏,玩家需要猜测一个4位不重复数字的密码。系统会根据每次猜测反馈"公牛"(数字和位置正确)和"奶牛"(数字正确但位置错误)的数量。Python实现包括随机生成密码、验证输入合法性、计算公牛奶牛数量等功能模块,游戏持续进行直至完全猜中或用尽尝试次数。该游戏锻炼逻辑推理能力,要求玩家通过反馈信息逐步缩小数字范围。

2025-06-17 19:04:10 72

原创 【项目实战】Python实现猜数字游戏(全套源码)

摘要:本项目开发了一款简易猜数字游戏,采用二分查找策略提升猜测效率。用户自定义数字范围后,系统随机生成目标数字。游戏提供7次尝试机会,每次猜测后系统会提示"过高"或"过低"(案例显示42在1-100范围需7次,1-50范围需6次)。Python实现包含随机数生成、次数限制和实时反馈功能,命中显示祝贺信息,失败则公布答案并鼓励。核心算法通过循环处理用户输入,逐步缩小猜测范围,既具趣味性又锻炼逻辑思维。

2025-06-17 16:39:04 309

原创 【项目实战】Python实现2028游戏(源码)

2048游戏编程实现解析 摘要: 该程序通过Python实现了经典2048游戏,包含两个核心文件:logic.py处理游戏逻辑,2048.py驱动游戏运行。游戏采用矩阵操作实现移动逻辑:左移通过直接压缩合并,其他方向则借助矩阵反转或转置复用左移逻辑。程序包含完整的游戏状态检测(胜败判断)、随机数字生成和用户交互功能。主要特点包括:网格压缩消除间隙、相邻数字合并、矩阵变换实现多方向移动、状态机检测游戏进程等。用户通过WASD键控制移动方向,系统每次有效移动后在新位置随机生成数字2,直至达成2048或无有效移动

2025-06-16 22:09:43 323

原创 【人工智能】Python实战Pandas AI(全源码)

PandasAI是一款基于ChatGPT的Python工具,它通过自然语言指令简化了pandas库的数据处理操作。该工具利用OpenAI API自动生成并执行Python代码,帮助数据分析师快速完成数据查询、清洗、统计分析和可视化等任务。文章通过23个实战案例展示了PandasAI的核心功能,包括数据索引查询、描述性统计、缺失值处理、数据切片筛选、异常值检测以及图表生成等操作。PandasAI作为pandas的补充工具,能够显著提升数据处理效率,但需配合API密钥使用。开发者需注意该工具仍需结合传统编程知识

2025-06-16 21:55:28 136

原创 【机器学习】自动编码器实现(Python源码)

自动编码器是一种神经网络,通过编码器压缩数据为低维特征,再通过解码器重建原始输入。实验使用MNIST数据集构建了一个基础自动编码器,包含64维潜在空间,采用MSE损失和Adam优化器训练10轮。结果显示模型能有效重建图像,但存在轻微模糊。尽管在特征提取等任务表现优异,自动编码器仍面临记忆模式、重建质量受限和参数敏感等问题。该技术广泛应用于图像处理和异常检测等领域。

2025-06-15 19:11:51 135

原创 【深度学习】基于Keras的深度卷积生成对抗网络(Python源码)

本文研究了深度卷积生成对抗网络(DCGAN)在图像生成任务中的应用,重点探讨了提升GAN训练稳定性的方法。通过改进网络架构设计,包括移除全连接层、引入批归一化层和使用特定激活函数,有效缓解了模式崩溃问题。研究采用时尚MNIST数据集,详细阐述了DCGAN的生成器和判别器结构实现,展示了从噪声向量到28×28服装图像的生成过程。实验结果表明,该模型能够稳定训练并生成高质量图像,在监督学习任务中展现出良好的特征提取能力,在CIFAR-10数据集上达到82%的分类准确率。研究为提升GAN性能提供了可行方案。

2025-06-15 18:58:08 159

原创 【机器学习】使用HuggingFace模型进行文本到文本的生成(Python源码)

HuggingFace的文本生成技术通过Transformers库实现了高效的文本转换功能。该技术基于序列到序列模型,支持问答、翻译、改述、摘要等多种应用场景。文章详细介绍了文本生成原理,展示了使用T5模型实现文本摘要的具体步骤,包括环境准备、模型加载、文本预处理和摘要生成过程。HuggingFace的文本生成管道凭借其强大的预训练模型和灵活的生成策略,为自然语言处理任务提供了高效可靠的解决方案。

2025-06-14 19:48:04 337

原创 【人工智能】机器学习中的隐马尔可夫模型(Python源码)

隐马尔可夫模型(HMM)是一种强大的序列数据分析工具,通过可观测数据预测潜在变量状态。本文介绍了HMM的基本原理、核心组件(状态空间、转移概率、发射概率)及实现步骤,并展示了两个Python应用实例:天气预报和语音识别。在天气预报中,模型成功解码了"晴天"和"雨天"的隐藏状态序列;语音识别案例则演示了如何从音频信号中识别单词。文章还列举了HMM在生物信息学、金融分析等领域的广泛应用,证明其处理时序数据的有效性。通过hmmlearn等库的实现,HMM成为既实用又易于使用

2025-06-14 19:34:18 397

原创 【机器学习】Python实现条件生成对抗网络(CGAN)

条件生成对抗网络(CGAN)是GAN的改进版本,通过引入条件信息(如标签或文本)实现定向数据生成。其架构包含生成器和判别器:生成器融合噪声和条件信息生成目标数据;判别器评估数据真伪及条件匹配度。训练过程采用对抗机制和二元交叉熵损失函数。本文以CIFAR-10数据集为例,详细解析了CGAN的实现步骤,包括数据加载、模型构建(含嵌入层和卷积层)、损失函数设计及训练过程,最终实现按类别生成图像的功能。代码展示了从库导入到模型训练的完整流程。

2025-06-12 19:37:33 175

原创 【深度学习】全面介绍循环生成对抗网络(CycleGAN)

CycleGAN是一种无需配对数据的图像转换模型,通过对抗训练和循环一致性损失实现不同风格间的图像转换。模型包含双向生成器(G和F)和PatchGAN判别器,采用编码-残差转换-解码架构。其核心创新在于循环一致性约束,确保转换可逆性。应用涵盖艺术风格迁移、季节变换、对象转换等场景,但受限于仅能处理纹理变化。评估显示其在视觉任务中表现良好,但仍存在结构修改困难、输出不稳定等局限。

2025-06-12 19:23:57 147

原创 【深度学习】全面介绍超分辨率生成对抗网络(SRGAN)

摘要: SRGAN通过生成对抗网络(GAN)解决图像超分辨率中的纹理恢复问题,优于传统方法。生成器采用16层残差网络(SRResNet),结合亚像素卷积和参数化ReLU,提升重建质量;判别器基于DC-GAN架构,区分生成图像与真实高分辨率图像。损失函数融合VGG特征损失与对抗损失,平衡细节与真实性。实验在Set5等数据集上验证其优势,MOS评分和定量指标(PSNR、SSIM)均优于现有方法,尤其在高倍上采样中表现突出。核心创新包括深度残差结构、VGG感知损失替代MSE,以及对抗训练策略。

2025-06-11 19:35:50 152

原创 【深度学习】Python实现瓦瑟斯坦生成对抗网络(WGANs)

WGAN(瓦瑟斯坦生成对抗网络)是GAN的重要改进版本,通过引入瓦瑟斯坦距离和梯度惩罚机制,有效缓解了传统GAN的模式崩溃问题。WGAN采用神经网络构建生成器和判别器,其核心创新在于损失函数设计,使训练更加稳定。实现步骤包括:定义瓦瑟斯坦损失函数、构建评论家和生成器模型、采用RMSprop优化器等。实验表明,随着训练迭代次数的增加,WGAN生成的图像质量显著提升,从模糊到清晰可辨。相比传统GAN,WGAN在梯度下降、网络架构灵活性等方面具有明显优势,为深度学习生成模型提供了更可靠的解决方案。

2025-06-11 19:27:31 243

原创 【深度学习】StyleGAN原理介绍

摘要: StyleGAN是NVIDIA提出的生成对抗网络,通过渐进式生长、双线性采样和风格解耦设计,实现对图像从宏观结构到微观细节的精准控制。其核心创新包括:映射网络生成中间潜在向量w调控风格;各分辨率层独立注入噪声增强细节;混合正则化提升特征鲁棒性。实验表明,该模型在FFHQ数据集上生成的人脸具有极高真实感,FID分数优异,且潜在空间特征解耦性良好。应用涵盖虚拟人脸生成、时尚设计、数据增强及游戏动画等领域,展现了强实用价值。

2025-06-10 19:36:16 69

原创 【深度学习】Python实现稀疏自动编码器(源码)

稀疏自编码器通过稀疏性约束(如L1正则化或KL散度)强制隐藏层神经元稀疏激活,从而学习数据的关键特征。相比传统自编码器,它能有效防止过拟合,生成更具解释性的紧凑表示。实现时需结合重建误差与稀疏性惩罚设计损失函数,并通过反向传播优化网络。实验表明,其在MNIST数据集上能有效学习低维特征,可视化结果验证了稀疏激活特性。应用包括特征提取、图像去噪、异常检测和数据降维,优势在于计算高效、特征可解释性强和模型稳健性高。代码示例展示了基于TensorFlow/Keras的构建流程,涵盖数

2025-06-10 19:29:41 268

原创 【机器学习】机器学习中的去噪自编码器(Python源码)

本文介绍了去噪自编码器(DAE)的原理与应用。DAE通过向输入数据添加噪声并训练网络重建原始输入,避免了标准自编码器退化为恒等映射的问题。文章详细阐述了DAE的编码器-解码器架构,包括数据损坏机制、损失计算和训练过程。在Python实现部分,展示了基于PyTorch的MNIST数据集处理、模型构建(包含三层编码器和解码器)、训练函数定义和性能评估方法。DAE在图像去噪、音频处理和特征学习等任务中表现优异,能有效提取数据鲁棒特征。实验结果表明,该模型可成功从噪声数据中重建出清晰的原始图像。

2025-06-09 21:55:59 351

原创 【深度学习】Python实现欠完备自动编码器(源码)

欠完备自编码器是一种高效的无监督学习工具,通过压缩输入数据到低维空间实现特征提取。其核心原理是通过编码器压缩数据、解码器重建数据,强制网络学习关键特征。本文详细介绍了其Python实现步骤:从加载MNIST数据集、定义卷积网络模型,到训练和评估过程。与标准自编码器相比,欠完备版本通过瓶颈层强制降维,具有更好的特征提取能力。应用领域包括特征提取、降维和异常检测,但也面临过拟合和优化难度等挑战。这种网络结构为处理复杂数据提供了有效解决方案。

2025-06-09 21:32:24 78

原创 【深度学习】Python实现收缩自编码器(CAE)

本文介绍了收缩自编码器(CAE)及其在图像特征提取中的应用。CAE通过改进标准自编码器,在损失函数中加入惩罚项,增强了对输入数据微小变化的鲁棒性。文章比较了CAE与稀疏、去噪自编码器的异同,并提供了基于TensorFlow的Python实现代码,包括模型构建、损失函数定义和训练过程。实验使用Fashion MNIST数据集,通过可视化对比原始图像与重建结果,展示了CAE的有效性。结果表明,CAE能够较好地保留图像特征,同时保持对扰动的稳定性。

2025-06-08 18:28:49 69

原创 【深度学习】在PyTorch中使用CUDA实现卷积自动编码器(Python源码)

摘要:卷积自动编码器(CAE)是一种针对图像数据的无监督神经网络,由编码器和解码器两部分组成。编码器采用卷积层和池化层压缩图像,解码器通过转置卷积层重建图像。CAE在图像去噪、特征提取和异常检测等领域有重要应用。本文展示了使用PyTorch实现CAE的完整流程,包括模型构建、数据加载、训练过程和结果可视化。实验在Flowers102数据集上进行,训练50个epoch后损失降至0.0101,重建图像保留了原始图像的主要特征。代码支持GPU加速,可扩展至高分辨率图像处理任务。

2025-06-08 16:44:11 67

原创 【深度学习】Python实现变分自编码器(VAE)(源码)

本文介绍了变分自编码器(VAE)的原理与实现。VAE是一种特殊的生成模型,通过编码器学习数据的均值方差分布,在潜在空间随机采样后,由解码器重构或生成新数据。文章详细阐述了VAE的三部分架构:编码器、潜在空间和解码器,并提供了基于Fashion-MNIST数据集的Python实现代码。实现过程包括创建采样层、定义编码器和解码器、训练模型以及可视化潜在空间聚类。结果表明,VAE能够有效学习数据分布特征并生成新的相似样本。

2025-06-08 16:32:58 95

原创 【深度学习】Python实现演员-评论家算法(全源码)

        演员 - 评论家算法(Actor - Critic Algorithm)是一种强化学习算法,它结合了两个部分,即选择行动的“演员”(Actor)和评估行动的“评论家”(Critic)。这通过平衡决策和反馈,帮助智能体更有效地学习。在演员 - 评论家方法中,演员学习如何做出决策,而评论家则检查这些决策的优劣。这种双重角色帮助智能体在探索新行动的同时,也利用已学到的知识,使学习过程更优且更平衡。

2025-06-07 18:45:09 575

原创 【深度学习】Python实现强化学习算法(源码)

        REINFORCE是强化学习中用于改进决策方式的一种方法。它通过尝试各种行动,然后根据随后获得的总奖励来调整这些行动的概率进行学习。

2025-06-07 18:30:17 536

原创 【深度学习】强化学习中的深度Q学习

        深度Q学习是一种结合深度学习技术的决策优化方法,特别适用于状态空间庞大的复杂环境,例如游戏和机器人控制领域。在学习深度Q学习之前,理解其基础概念Q学习至关重要。作为无模型的强化学习算法,Q学习通过评估Q值函数来寻找最优策略——该函数量化了在特定状态下执行某个动作的价值。其核心目标是通过不断优化决策,最终获得最大化的累积奖励。

2025-06-07 18:16:03 463

原创 【人工智能】什么是图像识别?

图像识别也是机器学习的一种应用。图像识别是系统理解和解读来自图像或视频的视觉信息的能力。本文涵盖了图像识别在现实世界中的所有细节、其工作原理,以及图像识别在计算机科学领域的优势和重要性。只需通读全文,即可深入了解图像识别。

2025-06-07 17:01:33 532

原创 【人工智能】什么是扩散模型

扩散模型是一类强大的生成模型,在机器学习和人工智能领域中已崭露头角。它们通过模拟扩散过程提供了一种独特的数据生成方法,该过程的灵感来源于诸如热扩散等物理过程。本文深入探讨扩散模型,探究其架构、工作原理、应用及优势。

2025-06-07 16:56:03 397

原创 【人工智能】什么是大语言模型(LLMs)

大型语言模型是一种人工智能算法,它运用具有大量参数的神经网络技术,通过自监督学习技术来处理和理解人类语言或文本。诸如文本生成、机器翻译、摘要撰写、基于文本的图像生成、机器编码、聊天机器人或对话式人工智能等任务,都是大型语言模型的应用场景。

2025-06-07 16:51:18 436

原创 【人工智能】什么是层次状态空间搜索(HSSS)

层次状态空间搜索(HSSS)是一种通过多级抽象来高效解决复杂问题的AI方法。它将状态空间组织为层次结构,从顶层抽象逐步细化到底层具体解决方案,显著提升搜索效率。该方法在自动驾驶导航、机器人规划和游戏AI等领域有广泛应用,能有效降低计算负担并增强系统适应性。尽管面临层级管理和动态调整等挑战,但结合机器学习的新进展正在不断拓展其应用边界,使HSSS成为处理大规模复杂问题的关键技术。

2025-06-07 16:46:35 145

原创 【人工智能】人工智能中的分层强化学习(HRL)

         在快速发展的人工智能(AI)领域,强化学习(RL)已成为解决复杂决策问题的有力工具。传统的强化学习算法在从游戏到机器人等各个领域都取得了显著成功。然而,随着任务变得更加复杂,平面强化学习方法的局限性日益明显。分层强化学习(HRL)应运而生,它提供了一种结构化的方法,将复杂任务分解为可管理的子任务。

2025-06-07 16:41:57 349

原创 【人工智能】分层任务网络(HTN)及其在人工智能规划中的应用

分层任务网络(HTN)是一种将复杂任务分解为层级化子任务的人工智能规划技术,广泛应用于机器人、游戏AI和工业自动化领域。其核心包括任务分解、方法选择、前提条件验证等组件,通过结构化方式简化问题求解。HTN规划具有方法复用、多路径解决方案等优势,但也面临管理复杂度、领域依赖性等挑战。相比经典规划方法,HTN更注重任务层级结构。未来发展方向包括结合机器学习优化算法、提升环境适应性和扩展能力。该技术为复杂系统规划提供了高效框架,具有持续发展的潜力。(149字)

2025-06-07 16:36:52 223

原创 【机器学习】蒙特卡洛树搜索原理(MCTS)

蒙特卡洛树搜索(MCTS)是一种启发式搜索算法,在人工智能领域尤其是决策和博弈领域备受推崇。该算法以处理复杂策略游戏著称,能有效应对传统算法难以解决的庞大搜索空间问题。

2025-06-06 20:54:05 557

原创 【人工智能】Python实现部分可观测马尔可夫决策过程(POMDP)

POMDP(部分可观测马尔可夫决策过程)为不确定性和信息缺失环境下的决策问题提供了有效解决方案。以迷宫导航为例,该框架通过量化不确定性来模拟现实决策场景,显著提升了智能系统在复杂动态环境中的表现。这一特性使POMDP成为推动机器人、自主系统等关键领域发展的核心技术,尤其在需要处理不确定性的复杂决策任务中展现出独特优势。

2025-06-06 20:46:27 558

原创 【人工智能】什么是概率推理

        概率推理作为人工智能的核心方法,广泛应用于各类场景。它通过有效处理不确定性,帮助系统做出合理决策。这种基于概率的机制使AI能够从容应对现实世界的复杂性,显著提升系统的可靠性和性能表现。

2025-06-06 20:29:51 259

win32 SDK 编程教程

WIN32 SDK开发教程,非常好的教程。相当实用

2012-11-15

VC控件使用指南

非常好的介绍VC控件使用技巧和方法。非常值得一看

2012-11-15

CKEditor专为ASP.Net使用的html在线编辑器

这个是我做项目用到的,经过反复对比才决定使用的。很好用,为了怕大家找不到我把CKEditor.net.dll直接放到目录下了。实在不会用了看我的博客http://blog.csdn.net/jianxia_wzx/article/details/8986120 这个是专门写的教程,通俗易懂。。。。。。

2013-05-28

C语言实现魔方源代码

C语言实现任意阶数的魔方源代码。绝对正确,亲自编写

2012-10-20

C++语言实现B+树

C++实现B+树源代码,自己亲自写的哦,有问题可以联系

2012-10-20

C语言获取屏幕刷新率

C语言编写的获取屏幕刷新率源代码。

2012-10-20

方差计算器

C语言开发的方差计算器。实验专用。绝对可用。

2012-10-20

C语言实现网络校验和

C语言实现网络校验和。自己亲自写的,经实验正确。

2012-10-20

C语言实现推箱子源代码

C语言实现的推箱子游戏,亲自写的源代码.

2012-10-20

win32编程教程(极力推荐)

WIN32 SDK开发教程,非常好的教程。相当实用。极力推荐

2012-11-15

C语言编写进制转换器

C语言编写的进制转换器,亲自写的,有问题联系。

2012-10-20

C语言编写的植物大战修改器

自己没事写的C语言植物大战僵尸修改器,亲自实验可行

2012-10-20

并行程序设计 曼德罗伯特集源代码

并行程序设计经典案例代码。 源代码完全可编译。自己亲自写的

2012-10-20

C语言实现模式匹配KMP算法源代码

采用C语言实现模式匹配KMP算法源代码,自己亲自写的,绝对可用。

2012-10-20

C语言制作的音乐播放器

自己亲自写的C语言音乐播放器,代码相当短,但是实现了应有的功能

2012-10-20

数字分析方程球根源代码

包含好几种数值分析方程球根的实现代码,写作业时亲自写的

2012-10-20

win32进行asm编程教程

win32进行ASM开发的必备文档。非常好的教程

2012-11-15

win32API函数使用

详细介绍WIN32 API函数的资源,开发WIN32 SDK必不可少。

2012-11-15

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除