1. 求最大价值
给定 背包的容积 W,物品的体积数组 weights 和价值数组 values, 求背包能装入物品的最大价值。
例如:
W=6
weights = {1, 2, 3, 4};
values = {2, 4, 3, 6};
输出最大价值 :10
2. 解法
动态规划法, 0-1 Knapsack.一个物品只能用一次。
- 定义一个二维数组 dp 存储最大价值,其中 dp[i][j] 表示背包装入前 i 件物品体积不超过 j 的情况下能达到的最大价值。设第 i 件物品体积为 w,价值为 v,
- 根据第 i 件物品是否添加到背包中,可以分两种情况讨论:
- 第 i 件物品没添加到背包,总体积不超过 j 的前 i 件物品的最大价值就是总体积不超过 j 的前 i-1 件物品的最大价值,dp[i][j] = dp[i-1][j]。
- 第 i 件物品添加到背包中,dp[i][j] = dp[i-1][j-w] + v
则递推式为 dp[i][j] = max(dp[i-1][j-w] + v,dp[i-1][j])
,可以看到不管第 i 件物品有没有加到背包中,最大价值都和 i-1 相关,则变量 i 对于最大价值的影响可消去,优化为一维数组递推式:
dp[j] = max(dp[j-w] + v,dp[j])
每个物品加入后遍历更新数组
dp[0]:0 dp[1]:2 dp[2]:2 dp[3]:2 dp[4]:2 dp[5]:2 dp[6]:2
dp[0]:0 dp[1]:2 dp[2]:4 dp[3]:6 dp[4]:6 dp[5]:6 dp[6]:6
dp[0]:0 dp[1]:2 dp[2]:4 dp[3]:6 dp[4]:6 dp[5]:7 dp[6]:9
dp[0]:0 dp[1]:2 dp[2]:4 dp[3]:6 dp[4]:6 dp[5]:8 dp[6]:10
/**
* @param W 背包最大体积容量
* @param weights 物品体积数组 {1,2,3,4}
* @param values 物品价值数组 {2,4,3,6}
* @return 返回最大价值
**/
public int knapsack(int W, int[] weights, int[] values) {
int length = weights.length;
/*int[][] dp = new int[length + 1][W + 1];
for (int i = 1; i <= length; i++) { // 物品数组循环
int w = weights[i - 1];
int v = values[i - 1];
for (int j = 1; j <= W; j++) { // 物品体积循环
if (j >= w) { // 第 i 个物品加入背包
dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - w] + v);
} else {
dp[i][j] = dp[i - 1][j];
}
}
}
return dp[length][W];*/
int[] dp = new int[W + 1]; // 一维数组优化
for (int i = 1; i <= length; i++) { // 物品数组循环
int w = weights[i - 1];
int v = values[i - 1];
for (int j = W; j >= 1; j--) { // 0-1 背包问题一维数组表示需逆序遍历,否则之前的计算
//结果会对之后的结果造成影响
if (j >= w) {
dp[j] = Math.max(dp[j], dp[j - w] + v);
System.out.println("dp["+j+"]:"+dp[j]+" dp["+(j - w)+"]:"+dp[j - w]);
}
}
}
return dp[W];
}