算法-不同二叉搜索树总数

本文探讨了如何计算由n个节点组成的互不相同二叉搜索树的种数问题。采用动态规划的方法,通过递推公式dp(n)=dp(0)*dp(n-1)+dp(1)*dp(n-2)+...+dp(n-1)*dp(0),实现了高效求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 不同的二叉搜索树的种数

给定一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树的种数

示例:

输入:n = 3
在这里插入图片描述

输出:5

2. 解法

  • 思路:动态规划
    1. 假设 n 个节点存在二叉排序树的个数是 dp (n),令 f(i) 为以 i 为根的二叉搜索树的个数,则 dp(n) = f(1) + f(2) + f(3) + f(4) + … + f(n)
    2. 当 i 为根节点时,其左子树节点个数为 i-1 个,右子树节点为 n-i,则 f(i) = dp(i-1)*dp(n-i)
    3. 综上递推公式为 dp(n) += dp(i-1)*dp(n-i)
    4. 当 n 为 0 时,没有数字,只能形成一种 BST :空树,则初始化 dp[0] = 1
   public int numTrees(int n) {
        if (n <= 1) {
            return n;
        }

        int[] dp = new int[n + 1];
        dp[0] = 1;
        for (int k = 1; k <= n; k++) {
            for (int i = 1; i <= k; i++) {
                dp[k] += dp[i - 1] * dp[k - i];
            }
        }
        return dp[n];
    }
R7-2 二叉搜索树(BST)的2层结点统计问题是指在一个给定的二叉搜索树中,计算第2层(也称为中间层,因为对于完全平衡的树,第2层就是所有非叶子节点所在的层次)的节点总数。这个问题在数据结构算法中是一个经典的小问题,因为它可以帮助我们理解二叉搜索树的特性。 解决这个问题的基本思路是遍历整个二叉树,并记录当前访问节点的层数。当遇到第2层的节点时,计数器会增加。如果在访问过程中发现左右子树的高度差超过1,则说明已经到达下一层,需要更新计数器。以下是用C语言实现的一个简单示例: ```c #include <stdio.h> #include <stdlib.h> struct TreeNode { int val; struct TreeNode* left; struct TreeNode* right; }; int countLevelTwo(struct TreeNode* root) { if (root == NULL) return 0; int level = 0; // 层级计数 int count = 0; // 第2层节点计数 queue<int> q; // 使用队列辅助遍历 // 首先将根节点入队并标记为第一层 q.push(root); level++; while (!q.empty()) { int size = q.size(); for (int i = 0; i < size; i++) { struct TreeNode* node = q.front(); q.pop(); // 如果节点不在第二层,检查其子节点 if (level != 2) { if (node->left) { q.push(node->left); level++; } if (node->right) { q.push(node->right); level++; } } else { // 在第二层,计数++ count++; } } level--; } return count; } int main() { // 创建一个简单的二叉搜索树实例 struct TreeNode* tree = ...; // 根据实际情况构建树结构 int result = countLevelTwo(tree); printf("第2层的节点总数是:%d\n", result); return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值