用 Python 生成「工作负载图」
什么是工作负载图?
在人力资源与项目管理场景中,工作负载图虽核心都是 “可视化负载分布”,但因服务目标不同,在分析主体、指标设计、应用场景上存在明确差异,同时又能通过数据联动实现 “人力与项目的协同优化”,是连接 “人” 与 “事” 的关键工具。它既能帮助人力资源部门确保人力配置合理,又能辅助项目管理者把控任务进度与资源匹配度,避免因 “人岗错配” 或 “任务过载” 导致项目延期、人员流失。
从人力资源场景的工作负载图来看,核心围绕 “人” 的效率与公平性展开,分析主体多为 “个体员工、部门团队、岗位序列”,时间维度常以 “周、月、季度” 为单位,负载指标聚焦 “人力相关量化数据”:比如 “日均工时”(判断是否过载,如超 10 小时为饱和)、“任务饱和度”(核心任务占比,如某员工 80% 工时用于核心工作则合理)、“跨项目协作时长”(避免某员工同时参与 3 个以上项目导致精力分散),还会结合 “岗位能力模型” 标注负载匹配度(如让初级员工承担核心攻坚任务,属于 “负载错配”)。图形上常用 “堆叠柱状图” 展示工时构成(核心工作 / 协作 / 临时任务占比)、“热力图” 呈现部门内各岗位负载分布(红色为高负载、绿色为合理)。其核心价值是解决 “人力浪费与过载并存” 问题:比如通过负载图发现某部门 3 名员工长期工时超 12 小时(需补充编制),而另一部门员工日均工时仅 5 小时(可调度支援),同时可核查 “高负载员工是否集中在某一岗位”,为招聘编制、调岗、技能培训提供依据,确保人力资源高效且公平分配。
在项目管理场景中,工作负载图则聚焦 “事” 的进度与资源适配,分析主体转向 “项目任务、项目组、资源(人力 / 设备 / 预算)”,时间维度更细化(常以 “天、周” 为单位,匹配项目里程碑节点),负载指标围绕 “项目推进数据” 设计:比如 “任务完