欧拉(Euler)定理

Euler定理描述了满足特定条件的多面体中,顶点数(v),边数(e),和面数(f)之间的数学关系:v - e + f = 2。这一结论适用于任何可以通过一条路径连接任意两个顶点且能将多面体分割成两部分的多面体。该定理在拓扑学和几何学中具有重要意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Euler定理 设P为满足下列条件的多面体:
(a) P的任何两个顶点可以用一串棱相连接;\lparen{a}\rparen\ P的任何两个顶点可以用一串棱相连接;(a) P

(b) P上任何由直线段(不一定非是P的棱不可)构成的圈,使P分割成两片.则对于P来说,v−e+f=2\lparen{b}\rparen\ P上任何由直线段(不一定非是P的棱不可)构成的\textbf{圈},\\使P分割成两片.则对于P来说,v-e+f=2(b) P线(P)使P.Pve+f=2

v(vertex):顶点数v(vertex): 顶点数v(vertex):
e(edge):边数e(edge): 边数e(edge):
f(face):面数f(face): 面数f(face):

《基础拓扑学》page 3《基础拓扑学》page\ 3page 3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鸟哥01

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值