AI - LangChain - 介绍(1)

引用 11 篇资料作为参考

  1. LangChain入门指南:构建高可复用、可扩展的LLM应用程序_百度百科
  2. 融资亿级的开源项目LangChain: 赋能LinkedIn等巨头,引领AI商业创新
  3. 洞悉LangChain:LangChain工程化设计,从API到智能Agent的全面探索
  4. 大模型应用框架-LangChain(一)-阿里云开发者社区
  5. LangChain-CSDN博客
  6. 2024全新Langchain大模型AI应用与多智能体实战开发-腾讯云开发者社区-腾讯云
  7. LangChain 实战课学习 | 豆包MarsCode AI刷题LangChain 是一个开源框架,旨在帮助开发者构建 - 掘金
  8. 解释一下langchain - CSDN文库
  9. 什么是人工智能领域的 LangChain-腾讯云开发者社区-腾讯云
  10. 解读LangChain-51CTO.COM
  11. LangChain大模型应用开发:快速入门_python langchain开发-CSDN博客

极客时间文档

Introduction | 🦜️🔗 LangChain //LangChain 官方文档对 Document QA 系统设计及实现的详细说明

[2010.10439] Open Question Answering over Tables and Text //论文开放式表格与文本问题回答,Chen, W., Chang, M.-W., Schlinger, E., Wang, W., & Cohen, W. W. (2021). Open Question Answering over Tables and Text. ICLR 2021.

https://huggingface.co/tasks/document-question-answering //HuggingFace 官网上的文档问答资源

LangChain 是一个开源框架,专注于简化基于大型语言模型(LLM)的应用程序开发。它通过模块化设计,帮助开发者将语言模型与外部数据源、工具及业务流程高效集成,构建具备上下文感知和自主决策能力的智能应用。以下是其核心要点:


一、项目背景与发展

  • 起源:由 Harrison Chase 于 2022 年 10 月发起,旨在解决 LLM 与外部工具、数据结合的问题。2023 年成立公司并获超千万美元融资,逐步形成包含开发工具(LangSmith)、状态管理(LangGraph)的生态系统。
  • 定位:作为 LLM 的“桥梁”,突破纯模型调用局限,支持实时数据接入与多步骤任务执行。

二、核心功能与设计理念

模块化架构 LangChain 提供六大核心组件,覆盖 LLM 应用开发全流程:

  • 模型集成:统一接口支持 OpenAI、Anthropic 等主流 LLM 及本地模型。
  • 数据连接:支持数据库、文档(PDF、CSV)、API 等外部数据源的检索增强生成(RAG)。
  • 链(Chains):组合多步骤任务(如“查询天气→生成建议→翻译”),支持预定义链与自定义链。
  • 代理(Agents):动态调用工具(如搜索引擎、计算器),实现自主决策(如自动订票、数据分析)。
  • 记忆管理:维护对话历史与任务状态,支持短期/长期存储。
  • 提示模板:动态生成提示词,优化模型输出质量。

开发工具与语言支持

  • LangSmith:提供调试、测试、监控功能,确保应用从开发到部署的可靠性。
  • 多语言支持:Python 和 JavaScript(TypeScript)双版本,适配不同开发者需求。

三、典型应用场景

  • 智能问答系统 结合企业文档或知识库,通过 RAG 生成精准答案(如内部知识库查询)。
  • 自动化流程 构建多代理系统处理复杂业务(如 LinkedIn 的自动化工作流)。
  • 内容生成与处理 自动撰写营销文案、生成代码、分析长文档摘要。
  • 对话机器人 管理上下文与工具调用,支持多轮交互(如客服机器人、个人助手)。
  • 数据科学 集成 Pandas、PowerBI 等工具,处理结构化数据并生成报告。

四、优势与挑战

  • 优势:
  1. 灵活扩展:模块化设计允许快速集成新工具与数据源。
  2. 降低门槛:LCEL 表达式语言简化复杂流程开发。
  3. 社区生态:支持 200+ 第三方集成(如 Hugging Face、Pinecone)。
  • 挑战:
  1. 学习成本:组件繁多,需深入理解 LLM 原理与框架设计。
  2. 性能优化:长链任务可能增加延迟,需针对性调优。

五、未来展望

随着多模态模型发展,LangChain 可能扩展至图像、音频处理,并强化推理能力。其模块化理念或成为构建企业级 AI 应用的标准化平台,尤其在医疗、教育等垂直领域潜力显著。


如需进一步了解技术细节,可参考《LangChain入门指南》或官方文档。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值