single-number

本文介绍了一种线性时间复杂度的算法,用于在一个除一个数外其余皆出现三次的数组中找到该唯一单例。通过统计每一位上1出现次数并对3取余数,最终确定单例的具体数值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

single-number

题目描述

Given an array of integers, every element appears three times except for one. Find that single one.

Note: 
Your algorithm should have a linear runtime complexity. Could you implement it without using extra memory?

思想

一个数组里面除了一个数,其他数都出现了三次。希望你找出这个数

题目要求线性的时间内给出解决方案,普通的方法肯定不行的。

通过可以分析,如果一个数出现了三次,说明其相应bit位也出现了三次

比如3 (011) 出现了三次, 则说明bit1位的1出现了三次,bit2位的1出现了三次

我们可以建立一个32位的数字,来统计每一位上1出现的个数,我们知道如果某一位上为1的话,那么如果该整数出现了三次,对3去余为0,我们把每个数的对应位都加起来对3取余,

最终剩下来的那个数就是单独的数字。

代码

class Solution {
public:
    int singleNumber(int A[], int n) {
        int bits = 0;
        int result = 0;
        for(int i = 0; i < 32; i++) {
            bits = 0;
            for(int j = 0; j < n; j++){
                bits += (A[j] >> i) & 1;
            }

            result |= ((bits % 3) & 1) << i;
        }

        return result;
    }
};
STELLAR (Spatially-resolved Transcriptomics with Ellipsoid Decomposition and Latent Actualization for Reconstruction) is a computational tool developed by researchers at the Broad Institute of MIT and Harvard for annotating spatially resolved single-cell data. It uses a combination of machine learning algorithms and image analysis techniques to identify cell types and characterize gene expression patterns within individual cells. To use STELLAR, researchers first generate spatially resolved single-cell data using techniques such as spatial transcriptomics or in situ sequencing. This data typically consists of spatial coordinates for each cell, as well as information on gene expression levels for a large number of genes. STELLAR then uses a number of different algorithms to analyze this data and identify cell types. First, it uses an ellipsoid decomposition algorithm to model the spatial distribution of cells within the tissue sample. This allows it to identify clusters of cells that are likely to be of the same type. Next, STELLAR uses a latent actualization algorithm to model the gene expression patterns within each cell. This allows it to identify genes that are expressed at high levels within specific cell types, and to assign cell type labels to individual cells based on their gene expression profiles. Overall, STELLAR provides a powerful tool for analyzing spatially resolved single-cell data, and has the potential to significantly advance our understanding of cellular organization and function within complex tissues.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值