随着数据量的快速增长与用户需求的变化,数据库的管理与优化工作日益凸显其重要性。作为DBA及开发者,您是否曾面临以下挑战:
○ 分析场景下,在处理大规模数据的且耗时较长的查询是,常涉及海量数据的处理及复杂的计算,如何有效地实时监控其执行状态?
○ 面对线上多节点部署环境中的慢SQL问题时,如何判断是否存在分布式执行计划上的瓶颈?又如何精准定位是哪个长尾节点影响了整体执行效率?
○ 在分析SQL执行计划偏离预期的原因时,如何区分是由于查询时使用的SQL参数不具有代表性造成,还是统计信息不准确所导致?怎样判断?
相比于传统单机数据库,分布式数据库面对的场景更加复杂,涉及更多的链路,一条 SQL 的执行可能涉及到数十个节点的协同工作,如果慢 SQL 无法被及时解决,可能会导致正常请求被阻塞、CPU 负载飙升甚至影响整个集群的可用性。
作为原生分布式数据库,OceanBase 一直在努力提升数据库管理和运维效率、优化诊断和调优体验,本文将分享 OceanBase 对高效诊断数据库方面的实践和思考,包括:
○ 探讨在 AP 场景下面临的执行性能挑战,并介绍常用的诊断工具;
○ 通过案例分析展示如何利用 real-time plan monitor 进行分布式计划的诊断;
○ 思考如何简化和优化诊断调优过程,并介绍 OceanBase 实时 SQL 诊断的应用。
一、OceanBase AP 场景诊断实践
(一)AP 场景执行性能面临的挑战
在 AP(Analytical Processing,分析处理)场景下,每次执行通常涉及大量数据,需要复杂的多维数据建模,并依赖大规模并行能力来加速查询。
图 1:OLAP Process
在这种场景下,分布式数据库常见的性能问题主要包括以下几个方面:
1. 大规模数据扫描
许多分析查询需要处理大量数据,经常导致全表扫描或大范围数据扫描,进而造成高 I/O 和长响应时间。不合理的分区设计可能导致分区裁剪无效,使得查询范围扩大,导致扫描更多不必要的数据。在 OceanBase 数据库中,不同分区可能会分布在不同的节点上,因此跨分区查询要求系统能高效地跨节点甚至跨数据中心进行数据扫描。
2. 多表聚合和连接
○ 复杂聚合函数:在分析场景中频繁使用聚合函数(如 COUNT、SUM、AVG、MAX、MIN),在大数据集上执行会非常耗时。
○ GROUP BY 处理:高基数的 GROUP BY 操作会消耗大量内存和 CPU 资源,影响查询性能。
○ 大规模 JOIN 操作:分析查询通常涉及多个大表的关联, JOIN 操作会占用大量内存和 CPU 资源,特别是在关联条件选择不恰当时,可能会导致效率低下。
○ 不合理的 JOIN 顺序:优化器选择的 JOINS 顺序如果不合理,会导致中间结果集增大,