使用人工智能大模型腾讯元宝,如何做宣传稿?

今天我们学习使用人工智能大模型腾讯元宝,如何做宣传稿?

手把手学习视频地址:https://edu.csdn.net/learn/40402/666430

第一步在腾讯元宝对话框中输入如何协助老师做宣传稿,通过提问,我们了解了老师做宣传稿的步骤和方法。

第二步编辑问题进行提问,也是最重要的一步。首先输入身份和提问的问题,例如我是小学五年级年级主任,帮我写一份​五年级家长会上的学校宣传稿

问题编辑完成,按enter键发送

选择需要复制的内容,新建word文档,打开word文档,粘贴,点击保存

回到腾讯元宝对话框,进行第二次更加具体的班务宣传稿。

首先输入身份,提问的问题和要求,例如我是小学五年级年级主任,帮我写一份​五年级家长会上的学校宣传稿,简介学校最近取得成果增强家长信心,介绍五年级学生特点,强调家校共育重要性,今年培优教学计划。

问题编辑完成,按enter键发送。

选择需要复制的内容,打开word文档,粘贴,点击保存。

大家可以根据宣传稿的实际情况进行提问和修改。

 手把手学习视频地址:https://edu.csdn.net/learn/40402/666430

### 如何在腾讯云上部署和配置本地AI模型 #### 配置环境 为了在腾讯云环境中成功部署本地AI模型,首先需要创建一个合适的计算实例。推荐使用腾讯云推出的 Cloud Studio 或者通过购买一台具有 GPU 支持的 CVM 实例[^1]。对于 Deepseek 这样的大型 AI 模型,建议选择至少具备 8 核 CPU 和 32GB RAM 的机器,并配备 NVIDIA 显卡支持。 #### 安装依赖项 一旦选择了适合的虚拟机规格,在启动之后需安装必要的软件包和支持库。这通常涉及以下几个方面: - **Python 环境设置**: 使用 Conda 创建独立 Python 虚拟环境以便管理不同版本需求。 ```bash sudo apt-get update && sudo apt-get install -y python3-pip git curl wget unzip htop vim tmux screen build-essential cmake libboost-all-dev zlib1g-dev libbz2-dev liblzma-dev conda create --name myenv python=3.9 source activate myenv ``` - **Docker 工具链集成 (可选)**: 如果计划利用容器化技术简化流程,则应考虑引入 Docker 来封装整个应用及其运行时环境。 ```bash curl https://get.docker.com | sh \ && systemctl start docker \ && systemctl enable docker usermod -aG docker $USER newgrp docker ``` #### 下载预训练权重文件 许多先进的自然语言处理任务都需要加载庞大的参数集合才能正常工作。因此,下一步是从官方仓库或者其他可信资源获取目标架构对应的二进制数据集并解压到指定目录下。 假设我们正在操作的是 DeepSeek-Large 版本: ```bash mkdir /data/models/deepseek-large/ cd /data/models/deepseek-large/ wget https://example.com/path/to/weights.tar.gz # 替换为实际链接地址 tar zxvf weights.tar.gz rm weights.tar.gz ls -lh . ``` #### 启动服务端口监听程序 最后一步就是编写脚本来激活 RESTful API 接口或者 WebSocket 协议通信机制从而允许外部客户端发起请求调用内部逻辑功能模块。下面给出了一种基于 FastAPI 构建简单 HTTP Server 的例子演示方法之一。 ```python from fastapi import FastAPI, Request import torch from transformers import AutoTokenizer, AutoModelForCausalLM app = FastAPI() tokenizer = AutoTokenizer.from_pretrained("/data/models/deepseek-large/") model = AutoModelForCausalLM.from_pretrained("/data/models/deepseek-large/", device_map="auto", load_in_8bit=True) @app.post('/generate') async def generate_text(request: Request): body = await request.json() input_ids = tokenizer.encode(body['prompt'], return_tensors='pt').to('cuda') outputs = model.generate(input_ids=input_ids, max_length=int(body.get('max_tokens', '50')), temperature=float(body.get('temperature', '0.7'))) result = tokenizer.decode(outputs[0], skip_special_tokens=True) return {"output":result} ``` 完成上述步骤后即可测试接口是否能够返回预期的结果了! ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

秋9

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值