一份简短的风格迁移调研结果

本文是一份关于风格迁移的调研,涵盖了从最初的开创性工作到现在的多项技术,包括使用神经网络实现的艺术风格转换,实例归一化在快速风格转换中的应用,以及实时任意风格转移等。文章列举了相关论文、实践案例、阅读笔记和代码实现,提供了深入理解和实现风格迁移的资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

style_transfer_survey

A survey on style_transfer from the original fantasy paper till now.

Contents:

Papers

  • A Neural Algorithm of Artistic Style
    • arxiv: 1508.06576
    • github: https://github.com/jcjohnson/neural-style
    • translation: https://www.jianshu.com/p/9f03b61fdeac
  • Texture Networks: Feed-forward Synthesis of Textures and Stylized Images
  • Perceptual Losses for Real-Time Style Transfer and Super-Resolution
  • Incorporating long-range consistency in CNN-based texture generation
  • Instance Normalization: The missing Ingredient for Fast Stylization
    • arxiv:
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值