需要动脑袋的双指针:581. 最短无序连续子数组

文章介绍了如何在O(n)时间复杂度内找到一个整数数组中,需要进行升序排序以使整个数组有序的最短子数组。通过维护最大值(maxs)和最小值(mins)的边界,从两端遍历数组,找到无序子数组的左右边界,从而得出子数组的长度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给你一个整数数组 nums ,你需要找出一个 连续子数组 ,如果对这个子数组进行升序排序,那么整个数组都会变为升序排序。

请你找出符合题意的 最短 子数组,并输出它的长度。

示例 1:

输入:nums = [2,6,4,8,10,9,15]
输出:5
解释:你只需要对 [6, 4, 8, 10, 9] 进行升序排序,那么整个表都会变为升序排序。

示例 2:

输入:nums = [1,2,3,4]
输出:0

示例 3:

输入:nums = [1]
输出:0

要求On时间复杂度,我们就要一趟遍历搞定,这种时候容易想到双指针

分析题目给的数组,你会得到三段东西。那就是前面一定有序,中间无序,后面有序

这三段数组。

很显然,想要找到无序的长度,只要找到无序部分的左边和前面有序接壤的下标位置就行,这个位置一定是比前面大,也比后面一个大的,好比一个山峰一样

同理需要找到无序部分右边界的那个位置

做法就是维护一个max一个min来帮助确定边界, 先看max,如何维护?肯定是要遍历。既然都遍历了如何确定位置?这就要具体分析一下。比如我们直接考虑一个有序的数组1 2 3 4,从左到右遍历每次都更新了max;这时我们考虑1 2 4 3,那么max在遍历到4的时候就可以确定,但到3的时候发现了逆序,所以我们可以记录3,3其实就是无序的右边界,。。考虑更复杂的情况,相当于遍历中每一次都要更新max,然后比较当前的值和max的关系,如果小于max,则说明存在逆序(因为max肯定是在之前被更新的),就更新一下无序的右边界,最后被更新到的就是最终的右边界。

min的情况同理,只要从右往左更新min就可以。 这么一说可能还是有点绕,我们还是看题目的样例: 2 6 4 8 10 9 15 从左往右更新max的时候,会先被更新成6,遇到4的时候发现逆序了,把4更新成右边界,继续遇到8了更新成max,遇到10了更新成max,遇到9了,逆序,记录9为右边界,之后max更新成15。 从右往左更新min的时候,先是15,然后9,遇到10了逆序记录左边界,然后min更新成8,然后4,遇到6了逆序更新左边界为6,min最后更新成2。

所以无序的区间就是从6到9的部分。

这个思路用到的想法就是,前后有两段有序的部分,在有序的部分,你从左往右更新max肯定是在一直更新的,从右往左更新min也是同理,但遇到了无序的部分就不一定,下个元素可能会小于max,也可能会大于min。因为无序一定有这一性质,那么记录这一条件最后得到的肯定是无序的左右边界。 

  1. 从左往右,找最大位置,,从右向左找最小位置
  2. 如果数组本身有序,maxs,和mins一方是不会改变的,最后判断一下就行
  3. 所以两个for搞定,,可以摆弄小把戏,利用坐标,一个for搞定

先看两个for的:

int findUnsortedSubarray(vector<int>& nums) {

        
        int maxs=INT_MIN;//大边界
        int mins=INT_MAX;//小边界
        int ans=0;
        int l=-1,r=-1;
        for(int i=0;i<nums.size();++i)
        {
            if(nums[i]<maxs){
                r=i;
            }
            maxs=max(maxs,nums[i]);
        }
        for(int j=nums.size()-1;j>=0;--j)
        {
            if(nums[j]>mins){
                l=j;
            }
            mins=min(mins,nums[j]);
            
        }
        //如果倒序的话,r一定也是会被更新的,正序l一定会被更新
        return r==-1?0:r-l+1;

    }

再看一个for的:

int findUnsortedSubarray(vector<int>& nums) {
        int n = nums.size();
        int maxn = INT_MIN, minn = INT_MAX;
        int l = -1, r = -1;
        for (int i = 0; i < n; ++i) {
            if (nums[i] < maxn)
                r = i;
            else
                maxn = max(maxn, nums[i]);

            if (nums[n - 1 - i] > minn)
                l = n - 1 - i;
            else
                minn = min(minn, nums[n - 1 - i]);
        }
        return r == -1 ? 0 : r - l + 1;
    }

 over...

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BearPot

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值