
 

 

 

Abstract1 

 

Thanks to the powerful feature representations obtained 

through deep convolutional neural network (CNN), the 

performance of object detection has recently been 

substantially boosted. Despite the remarkable success, the 

problems of object rotation, within-class variability, and 

between-class similarity remain several major challenges. 

To address these problems, this paper proposes a novel and 

effective method to learn a rotation-invariant and Fisher 

discriminative CNN (RIFD-CNN) model. This is achieved 

by introducing and learning a rotation-invariant layer and 

a Fisher discriminative layer, respectively, on the basis of 

the existing high-capacity CNN architectures. Specifically, 

the rotation-invariant layer is trained by imposing an 

explicit regularization constraint on the objective function 

that enforces invariance on the CNN features before and 

after rotating. The Fisher discriminative layer is trained by 

imposing the Fisher discrimination criterion on the CNN 

features so that they have small within-class scatter but 

large between-class separation. In the experiments, we 

comprehensively evaluate the proposed method for object 

detection task on a public available aerial image dataset 

and the PASCAL VOC 2007 dataset. State-of-the-art 

results are achieved compared with the existing baseline 

methods. 

 

1. Introduction 

Object detection is one of the most fundamental yet 

challenging problems in computer vision community. 

Since the groundbreaking success of deep convolutional 

neural networks (CNN) [1] in image classification task [2] 

on the ImageNet large scale visual recognition challenge 

(ILSVRC) [3, 4], CNN-based object detection methods 

have recently attracted a great deal of research interest and 

have achieved state-of-the-art performance [5-27].  

Among various CNN-based methods for object detection, 

one of the most notable work is made by Girshick et al. [5] 

with the framework of region-CNN (R-CNN), which is ac- 
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Figure 1. While the CNN features have shown impressive success 

for object detection, the problems of object rotation, within-class 

variability, and between-class similarity still remain several major 

challenges. Here we show some example patches for each 

challenge obtained from PASCAL VOC 2007 dataset [28]. All 

example patches are warped into a fixed 224×224 pixel size. In 

this situation, how to learn a more powerful feature representation 

that is rotation insensitive and meanwhile has small within-class 

scatter and big between-class separation is highly desirable. The 

proposed rotation-invariant and Fisher discriminative CNN model 

provides a possible solution to address these problems. 

 

tually a chain of conceptually simple steps: generating 

candidate object proposals, classifying them as foreground 

or background, and post-processing them to improve their 

 

RIFD-CNN: Rotation-Invariant and Fisher Discriminative Convolutional Neural 

Networks for Object Detection 
 

Gong Cheng, Peicheng Zhou, Junwei Han* 

School of Automation, Northwestern Polytechnical University, Xi'an, China 

{gcheng,jhan}@nwpu.edu.cn, zpc19881119@gmail.com 

 

 

2884



 

 

fit to objects. Briefly, R-CNN framework proceeds as 

follows. First it extracts a few hundreds or thousands 

candidate object proposals which probably contain an 

object via the selective search algorithm [29] to reduce the 

computational cost. Then, R-CNN uses AlexNet model [2] 

to extract CNN features from object proposals and 

classifies them as objects or non-objects by using class- 

specific linear support vector machines (SVMs), where the 

AlexNet CNN model, with more than 60 million 

parameters, was first pre-trained on an auxiliary task of 

image classification in the ImageNet ILSVRC challenge [3] 

and then transferred and fine-tuned on a small set of images 

annotated for the detection task. Finally, the candidate 

object proposals are refitted to detected objects by using a 

bounding box regressor [30] to correct miss-localizations. 

This simple pipeline has achieved state-of-the-art detection 

performance on standard detection benchmarks (e.g., 

PASCAL VOC [28]) with a large margin over all the 

previously published methods, which are mostly based on 

deformable part model (DPM) [30].  

The success of R-CNN method [5] is largely attributed to 

the ability of CNN model to extract more richer high-level 

object representation features as opposed to hand- 

engineered low-level features such as SIFT [31] and HOG 

[32]. However, while the CNN features have shown 

impressive success for object detection tasks, they are still 

difficult to effectively deal with the challenges (as 

illustrated in Figure 1) of object rotation, within-class 

variability, and between-class similarity, which are some 

important sources of detection error. In this situation, how 

to learn a more powerful feature representation that is 

rotation insensitive and meanwhile has small within-class 

scatter and big between-class separation is highly desirable. 

To address these problems and to further improve the 

state-of-the-arts, in this paper we propose a novel and 

effective method to learn a rotation-invariant and Fisher 

discriminative CNN (RIFD-CNN) model.  

Our main contributions are summarized as follows: First, 

we build on the existing high-capacity CNN architectures 

[2, 9] to train a rotation-invariant CNN (RI-CNN) model by 

adding and learning a new rotation-invariant layer. This 

newly added rotation-invariant layer is trained through 

incorporating a regularization constraint term on the 

objective function of our RI-CNN model, which enforces 

the training samples before and after rotating to share the 

similar feature representations and hence achieving 

rotation-invariance. Evaluations on a public aerial image 

dataset [33] and comparisons with state-of-the-art methods 

demonstrate the effectiveness of the proposed RI-CNN 

model. Second, we propose a new method to train a Fisher 

discriminative CNN (FD-CNN) model by introducing and 

learning a Fisher discriminative layer. The Fisher 

discriminative layer is trained by imposing the Fisher 

discrimination criterion on the CNN features so that they 

have small within-class scatter but large between-class 

separation. Third, our RI-CNN model and FD-CNN model 

are complementary. By combining them together, we 

obtain a more powerful RIFD-CNN model. We have 

confirmed through comprehensive experiments that the 

proposed RIFD-CNN model can significantly improve the 

baseline methods on PASCAL VOC dataset [28]. 

2. Related Work 

Object detection has been actively studied for the last 

few decades. The DPM [30] and its variants [20, 22, 23, 

34-39] have been the leading methods for object detection 

tasks for years owing to the carefully crafted features like 

HOG [32]. In recent years, thanks to the availability of 

large scale training data, such as ImageNet [3], and the raise 

of high-performance computing systems, such as GPUs, 

various CNN-based methods [5-27] have been substantially 

improving upon the performance of object detection. 

Among them, the most related works and therefore also the 

baseline methods in our experiments are R-CNN method [5] 

and its improvement method [17].  

The introduction of the R-CNN framework [5] opens the 

door to extract rich features through deep CNN models to 

improve object detection performance. In the work of [5], 

AlexNet CNN [2] was used to extract a set of deep features 

from category-independent region proposals provided by 

selective search [29] and then class-specific linear SVMs 

were adopted to classify them. By adopting the R-CNN 

framework [5] with a deeper 16-layers VGGNet CNN 

model [9], the performance was further boosted.  

Some variants focusing on different aspects are also 

developed based on the successful R-CNN framework [5]. 

For instance, Zhang et al. [17] addressed the inaccurate 

localization problem by using a search algorithm based on 

Bayesian optimization that sequentially proposes candidate 

regions for an object bounding box and training the CNN 

with a structured loss that penalizes the localization 

inaccuracy explicitly. Zhu et al. [21] proposed an approach 

to improve the accuracy of object detection by exploiting a 

small number of accurate object segment proposals. They 

framed the problem as inference in a Markov random field, 

in which each detection hypothesis scores object 

appearance as well as contextual information using CNNs.  

Our method is also built upon the remarkable R-CNN 

framework [5] with the existing CNN architecture such as 

AlexNet [2] and VGGNet [9]. However, different from 

previous work, this paper mainly focuses on enriching the 

power of the CNN feature representations via imposing 

rotation invariance and fisher discriminative criterion on 

the objective function of our new RIFD-CNN model. 

Consequently, our work is also partly related with the ideas 

of learning invariant features such as [40-46] and the 

approaches incorporating discriminative terms into model 

training such as [47, 48]. In addition, other related works 

will be cited throughout the paper. 
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Figure 2. The framework of the proposed RI-CNN training. It consists of two steps: data augmentation and model training. The first step 

mainly generates a set of augmented training samples by using a simple rotating operation. In the second step, we build on the existing 

high-capacity CNN architectures to train our rotation-invariant CNN model by adding and learning a new rotation-invariant layer. 

 

 

3. Proposed method 

The goal of our method is to learn a rotation-invariant 

and Fisher discriminative CNN model in order to advance 

the performance of object detection. This is achieved by 

introducing and learning a rotation-invariant layer (Figure 

2) and a Fisher discriminative layer (Figure 3), respectively, 

on the basis of the existing high-capacity CNN architec- 

tures. To be specific, the rotation-invariant layer is trained 

by incorporating a regularization constraint term on the 

objective function of the RI-CNN model, which explicitly 

enforces the feature representations of the training samples 

before and after rotating to be mapped close to each other, 

and hence achieving rotation-invariance. The Fisher 

discriminative layer is trained by imposing the Fisher 

discrimination criterion on the CNN features so that they 

have small within-class scatter but large between-class 

separation. In the remainder of this section we first describe 

how to learn rotation-invariant CNN model and next detail 

the training of Fisher discriminative CNN model. 

3.1. Learning rotation-invariant CNN model 

The framework of the proposed rotation-invariant CNN 

(RI-CNN) model training is illustrated in Figure 2. It 

consists of two steps: data augmentation and model training. 

The first step mainly generates a set of positive and 

negative training samples by using a generic object 

proposal detection method [29] and a simple rotating 

operation. In the second step, we build on the existing 

popular CNN architectures, such as AlexNet [2] and 

VGGNet [9], to train our rotation-invariant CNN model by 

adding and learning a new rotation-invariant layer. 

Data augmentation. Given a set of initial training 

samples { , }X X X+ −= , we generate a set of new training 

samples RI { , }X T Xφ=  by rotating transformations, whe- 

re X +  denotes the initial positive examples, X −  denotes 

the initial negative examples, and 
1 2

{ , , , }
K

T T T Tφ φ φ φ=   is a 

family of K  rotation transformations with 
k

Tφ  denoting 

the rotation operation of a training sample with the angle of 

kφ φ∈ , 1, ,k K=  . In our implementation, we treat all 

region proposals with ≥0.5 intersection over union (IoU) 

overlap with a ground-truth box as initial positives for that 

box's class and the rest as initial negatives.  

Model training. As shown in Figure 2, in order to 

achieve rotation-invariance, we add a new rotation invari- 

ant fully-connected layer FCa that uses the output of layer 

FCm (m is the number of network layers except for 

classifier layer, e.g., in AlexNet [2] m=7 and in VGGNet [9] 

m=15) as input. Different from the training of traditional 

CNN models that only optimizes the multinomial logistic 

regression objective, our RI-CNN model is now trained by 

optimizing a new objective function via imposing a regular- 

ization constraint term to enforce the training samples 

before and after rotating to share the similar features. The 

pseudo-code of RI-CNN training is given in Algorithm 1. 

To avoid over-fitting and to reduce the training cost, the 

parameters (weights and biases) of layers C1, C2, … , and 

FCm, denoted by 1 2{ , , , }mW W W  and 1 2{ , , , }mB B B , 

are pre-trained on ImageNet dataset [3], domain specifica- 

lly fine-tuned to adapt to the detection task (e.g., PASCAL 

VOC), and then transferred to our RI-CNN model. For a 

training sample RIix ∈ , let ( )m ixO  be the output of layer 

FCm, ( )a ixO  be the output of layer FCa, ( )b ixO  be the 

output of softmax classifier layer FCb, and ( , )a aW B  and 

( , )b bW B  be the new parameters of layers FCa and FCb. 

Thus, ( )a ixO  and ( )b ixO  can be computed by  

 ( ) ( )( )a i a m i a
x xκ= +WO O B  (1) 
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 ( ) ( )( )b i b a i b
x xϕ= +WO O B  (2) 

where ( ) max( , )κ = 0x x  and 1( ) exp( )/ || exp( ) ||ϕ =x x x  

are the ReLU and softmax non-linear activation functions. 

In all our experiments, FCa has a size of 4096, and FCb has 

a size equal to ( 1)C +  ( C  object classes plus background). 

Given the training samples RI { | }i ix x X T Xφ= ∈ ∪  

and their corresponding labels 
RI RI{ }

i ix | x= ∈y  , where 

ixy  denotes the ground-truth label vector of sample ix  

with only one element being 1 and the others being 0, our 

objective is to train a RI-CNN model with the input-target 

pairs RI RI( , )  . Apart from requiring that RI-CNN model 

should minimize the classification error on the training dat- 

aset, we also require that RI-CNN model should have the 

rotation invariance capability for any set of training samp- 

les { , }i ix T xφ . To this end, we propose a new objective fun- 

ction to learn the parameters RI 1 2{ , , , , , }m a b=W W W W W W  

and RI 1 2{ , , , , , }m a bB = B B B B B  by the following formula 

( )

( ) ( )

RI RI RI

22

1 RRI R I 2I

,

min , ,
2

J

M R X T Xφ

λ
λ

=

 
+ + 

 

W

W

B

 
 (3) 

where 1λ  and 2λ  are two trade-off parameters that control 

the relative importance of the three terms. 

The first term RI RI( , )M    in Eq. (3) is the softmax 

classification loss function, which is defined by a 

( 1)C + -class multinomial negative log-likelihood criterion. 

It seeks to minimize the misclassification error for the 

given training samples and is computed by 

 ( )
( )

( )
RI

RI RI

1
, , log

1 i

i

x b i

x

M x
N K ∈

= −
+




  y O  (4) 

where ,a b  is the inner-product of a  and b , N  is the 

total number of initial training samples in X , and K  is the 

total number of rotation transformations for each ix X∈ . 

The second term ( , )R X T Xφ  in Eq. (3) is a rotation- 

invariance regularization constraint, which is imposed on 

the training samples before and after rotating, namely X  

and T Xφ , to enforce them to share the similar features. We 

define the regularization constraint term as 

 ( ) ( ) ( )
2

2

1
,

2
i

a i a i

x X

R X T X x T x
N

φ φ
∈

= − O O  (5) 

where ( )a ixO  serves as the RI-CNN feature of the training 

sample ix ; ( )a iT xφO  denotes the average RI-CNN feature 

representation of rotated versions of the training sample ix  

and so it is formulated as 

 ( ) ( )1

1
j

K

a i a ij
T x T x

K
φ φ=

= O O  (6) 

Algorithm 1 Learning RI-CNN model 

Input: a set of initial training samples { , }X X X+ −=  and their

corresponding ground-truth labels and a family of K  rotation

transformations 
1 2

{ , , , }
K

T T T Tφ φ φ φ=   with 
k

Tφ  denoting the

rotation operation of a sample with the angle of kφ  

Output: the parameters of our RI-CNN model, denoted by

RI 1 2{ , , , , , }m a b=W W W W W W  and RI 1 2{ , , , , , }m a bB = B B B B B  

  1: begin 

  2: Obtain the augmented input-target pairs RI RI( , )   

  3: Initialize ( , )a aW B  and ( , )b bW B  randomly 

  4: while stopping criterion has not been met do 

  5:  compute classification error using Eq. (4)  

  6:  compute rotation-invariance constraint term using Eq. (5)

  7:  compute objective function ( )RI RI RI,J W B  using Eq. (7) 

  8:  update RIW  and RIB  

  9: end while 

10: return RIW  and RIB  

11: end begin 

 

 

As can be seen from Eq. (5), this term enforces the feature 

of each training sample to be close to the average feature 

representation of its rotated versions. If this term outputs a 

small value, the feature representation is sought to be 

approximately invariant to the rotation transformations. 

The third term 2

RI 2|| ||W  in Eq. (3) is a weight decay term 

that tends to decrease the magnitude of the weights of RIW , 

and helps preventing over-fitting. 

By incorporating Eqs. (5) and (4) into Eq. (3), we have 

the following objective function 

( )

( )
( )

( ) ( )

RI

RI RI RI

2
21 2

RI 2
2

,

1
, log

1
min

2 2

i

i

i

x b i

x

a i a i

x X

J

x
N K

x T x
N

φ

λ λ

∈

∈

=

 
− + + 
 

− +  
 





W

W

B

y O

O O

  (7) 

We can easily see that the objective function defined by 

(7) not only minimizes the classification loss, but also 

imposes a regularization constraint to achieve rotation 

invariance. In practice, we solve this optimization problem 

by using stochastic gradient descent (SGD) method [49], 

which has been widely used in complicated optimization 

problems such as neural networks training. 

3.2. Learning Fisher discriminative CNN model 

As illustrated in Figure 3, our Fisher discriminative CNN 

(FD-CNN) model is designed by adding a new Fisher 

discriminative fully-connected layer FCc that uses the 

output of layer FCm or FCa (in this situation by combining 

RI-CNN and FD-CNN together we can obtain a more 

powerful RIFD-CNN model) as input. This newly added F- 
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Figure 3. Architecture of the proposed FD-CNN model. It is achieved by adding a new Fisher discriminative layer on the existing CNNs. 

 

 

isher discriminative layer is trained via imposing the Fisher 

discrimination criterion on the CNN features to enforce the 

learned FD-CNN features have small within-class scatter 

and large between-class separation. Algorithm 2 gives the 

pseudo-code of FD-CNN training. 

Similar to RI-CNN training, to reduce the training cost, 

the parameters (weights and biases) of layers C1, C2, … , 

FCm, and FCa, denoted by 1 2{ , , , , }m aW W W W  and 

1 2{ , , , , }m aB B B B , are pre-trained on ImageNet dataset 

[3], domain-specifically fine-tuned, and then transferred to 

our FD-CNN model. For a training sample FDkx ∈ , let 

( )a kxO  be the output of layer FCa, ( )c kxO  be the output 

of layer FCc, ( )d kxO  be the output of softmax classifier 

layer FCd, and ( , )c cW B  and ( , )d dW B  be the new 

parameters of layers FCc and FCd. Thus, ( )c kxO  and 

( )d kxO  can be computed by  

 ( ) ( )( )c k c a k c
x xκ= +WO O B  (8) 

 ( ) ( )( )d k d c k dx xϕ= +WO O B  (9) 

In all our experiments, FCc has a size of 4096, and FCd 

has a size equal to the number of object classes. Here, 

different from the (C+1)-way softmax classifier layer FCb 

of RI-CNN model, FCd is now a C-way softmax classifier 

layer (without background class), so the training samples 

for FD-CNN learning now become all ground-truth 

bounding boxes for each object class denoted by 

FD FD FD

1 2

FD
{ , , , }C=     , where FD

i  is the ground-truth 

bounding boxes for the i-th object class. Given the training 

samples FD { }kx=  and their ground-truth label vectors 

FD FD{ }
k kx | x= ∈y  , our objective is now to train a 

FD-CNN model with the input-target pairs FD FD( , )  . 

Except for requiring that FD-CNN model should minimize 

the misclassification error on the training dataset, we also 

require that FD-CNN model should have powerful 

discriminative capability. For this purpose, we propose the 

following discriminative objective function to learn the 

parameters of FD 1 2{ , , , , , , }m a c d=W W W W W W W  and 

FD 1 2{ , , , , , , }m a c dB = B B B B B B  

( )

( ) ( )FD FD FD

FD FD FD

24

3 FD 2

,

min ,
2

J

M F
λ

λ

=

 
+ + 

 

W

W

B

  
 (10) 

where 3λ  and 4λ  are two trade-off parameters that control 

the relative importance of the three terms. 

The first term FD FD( , )M    in Eq. (10) is a classification 

error function that seeks to minimize the classification error 

for the given training samples and is computed by 

 ( ) ( )
FD

FD FD

FD

1
, , log

k

k

x d k

x

M x
∈

= − 


 


y O  (11) 

where FD| |  is the number of training samples in FD . 

The second term FD( )F   in Eq. (10) is a discrimination 

regularization constraint imposed on the CNN features. 

Based on the Fisher discrimination criterion [50], this can 

be achieved by minimizing the within-class scatter of FD , 

denoted by w FD( )S  , and maximizing the between-class 

scatter of FD , denoted by B FD( )S  . w FD( )S   and 

B FD( )S   are defined as 

( )( ) ( )( )
FD

w FD 1
( ) i

k

T

c k c k

C

i ii x
S x x

= ∈
−= −  mO O m


  (12) 

 ( )( )B FD 1
( )

T

i

C

i ii
nS

=
− −= m m m m  (13) 

where in  is the number of samples in the i-th object class, 

im  and m  are the mean feature representations of 
FD

i  

and FD , respectively, and are computed by 

( ) ( )
FD FD

FD

1 1
,i

k k
c ki x x

i

c k
n

x x
∈ ∈

= = m O m O
 

 (14) 
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Algorithm 2 Learning FD-CNN model 

Input: the input-target pairs FD FD( , )   

Output: the parameters of our FD-CNN model, denoted by

FD 1{ , , , , , }m a c d=W W W W W W  and FD 1{ , , , , , }m a c dB = B B B B B  

  1: begin 

  2: Initialize ( , )c cW B  and ( , )d dW B  randomly 

  3: while stopping criterion has not been met do 

  4:  compute classification error using Eq. (11)  

  5:  compute discriminative regularization term using Eq. (15)

  6:  compute objective function ( )FD FD FD,J W B  using Eq. (16) 

  7:  update FDW  and FDB  

  8: end while 

  9: return FDW  and FDB  

10: end begin 

 

 

Intuitively, the discriminative regularization term FD( )F   

can be defined as 

 ( ) ( )FD w FD B FD) ( )( ( )tr S tr SF = −    (15) 

Thus, by incorporating Eqs. (15) and (11) into Eq. (10), 

we can form the following discriminative objective 

function of FD-CNN model 

( )

( )

( ) ( )( )

FD

FD FD FD

FD

24

3 FD 2w FD B FD

,

1
, l

( )

og

2
)

n

(

mi
k

k

x d k

x

tr S tr

J

x

S
λ

λ

∈

=

 
− + 
 
 

+ 


−




W

W

B

y O


 

 (16) 

As can be seen from Eq. (16), the new discriminative 

objective function not only minimizes the classification 

loss, but also imposes a regularization constraint to make 

the learned CNN features be more discriminative. 

4. Experiments 

In this section, we first demonstrate that the use of our 

RI-CNN features can outperform the state-of-the-arts [2, 46, 

51, 52] for rotation-invariant object detection, specifically 

for finding aerial cars that appear at arbitrary orientations 

on a publicly available satellite image dataset [33]. We next 

focus on comprehensively evaluating the proposed 

RI-CNN model, FD-CNN model, and especially their 

combination (RIFD-CNN model) for standard object 

detection tasks on PASCAL VOC 2007 dataset [28]. The 

experimental results show that our method significantly 

improves the existing baseline methods such as [5, 17]. The 

performance of object detection is measured according to 

the PASCAL criterion [28], i.e., the average precision (AP) 

and the mean AP over all object classes. Without explicit 

statement, we adopt the standard IoU criteria of 0.5 for all 

experimental evaluation. 

 

Model AP (%)

RC-RBM IHOF [46] + linear SVM 72.7 

Gradients IHOF [46] + linear SVM 74.7 

RC-RBM [46] + Gradients IHOF [46] + linear SVM 77.6 

Standard HOG [32] + slot kernel structured SVM [52] 75.7 

Rotation-invariant HOG [51] + linear SVM 82.6 

Rotation-invariant HOG [51] + Random Forest 84.2 

Fine-tuned CNN with AlexNet [2] + linear SVM 90.2 

Our RI-CNN with AlexNet [2] + linear SVM 94.6 

Table 1 The detection result comparison for different methods on 

the aerial car detection dataset.  

4.1. Aerial car detection 

In this experiment, we use a public dataset introduced by 

[33], which has been widely used by some published work 

such as [33, 46, 51, 52]. This dataset consists of 30 aerial 

images with a total number of 1319 manually labeled cars 

that appear at arbitrary orientations. The task is challenging 

due to the low resolution and the varying illumination 

conditions caused by the shadows of buildings. Like the 

compared work [33, 46, 51, 52], we perform 5-fold cross 

validation and report average results across all folds. 

Implementation. We adopt the most popular AlexNet 

CNN [2] pre-trained on ImageNet [3] as our building block. 

To adapt it to the new aerial car detection task, we first 

perform SGD fine-tuning of the whole CNN parameters 

with a 2-way softmax classification layer (one for car and 

the other for background) using augmented training 

samples obtained from the aerial dataset [33]. In this step, 

we sample 32 positives and 96 negatives for each SGD 

iteration to form a mini-batch of size 128. The SGD 

learning rate is set to 0.0005 to allow fine-tuning to make 

progress while not clobbering the initialization. We set the 

momentum to 0.9, and the weight decay to 0.0005 for all 

the layers. After that, we further train a RI-CNN model by 

adding and learning a new rotation-invariant layer as 

described in section 3.1. In this step, we randomly sample 2 

positive examples and 2 negative examples together with 

their corresponding 4×35=140 rotated examples to form a 

mini-batch of size 144. The SGD learning rate is set to 0.01 

for the last two layers training and 0.0001 for the whole 

network fine-tuning, and decreases by 0.5 every 10000 

iterations. The parameters of Eq. (7) are set to 1 =0.001λ  

and 2 =0.0005λ . To augment the training data, we treat all 

region proposals (provided by [33]) with ≥0.5 IoU overlap 

with a ground truth box as initial positives and the rest as 

initial negatives. Then, we use 35 rotation transformations 

1 2
{ , , , }

K
T T T Tφ φ φ φ=   with {10 ,20 , ,350 }φ =     to perf- 

orm the rotation operation on each initial training sample to 

obtain 36x training samples. The augmented data are used 

for both fine-tuning and RI-CNN model training. Finally, 

we train a simple and efficient linear SVM classifier to 

classify all region proposals as cars or background. 
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Figure 4. Some example detections (true positive in green, false negative in red) by using our RI-CNN features with a linear SVM. 

 

 

Results and comparison with state-of-the-arts. Figure 

4 shows some example detections (true positive in green, 

false negative in red) by using our RI-CNN features with a 

linear SVM. As can be seen from Figure 4, despite the large 

variations in the orientations, the proposed method has 

successfully detected and located most of the cars. Besides, 

we also compare our results with some state-of-the-arts in 

Table1. As can be seen from Table 1, using a simple linear 

SVM classifier, our RI-CNN model can 1) significantly 

improve the performance of the traditional CNN model 

with AlexNet architecture [2] fine-tuned on the aerial car 

dataset, which is also the baseline of our method, and 2) 

outperform all other recent publications [46, 51, 52] which 

address the rotation problem in different ways, where [52] 

uses slot kernel structured SVM and the standard HOG 

feature, [46] focuses on learning rotation-invariant feature 

and descriptor called RC-RBM and IHOF, respectively, 

and [51] presents rotation-invariant HOG descriptors using 

Fourier analysis in polar and spherical coordinates. 

4.2. Object detection on PASCAL VOC 2007 

In this experiment, we focus on the PASCAL VOC 2007 

dataset [28], which is the most common benchmark to 

evaluate object detection algorithms. This dataset consists 

of 9963 complex scene images with 5011 training images 

and 4952 testing images, in which bounding boxes of 20 

diverse object classes were manually labeled. The task is to 

predict bounding boxes of the objects of interest if they are 

present in the images. 

Implementation. We build on the high-performance 

VGGNet CNN model [9], that was pre-trained on Image- 

Net [3] and then fine-tuned on PASCAL VOC 2007 dataset 

to train our RI-CNN model, FD-CNN model, and 

RIFD-CNN model, respectively. To augment the training 

data, we adopt a family of 6 rotation transformations 

1 2
{ , , , }

K
T T T Tφ φ φ φ=   with { 10 , 20 , 30 }φ = ± ± ±  

 to carry 

out the rotation operation on each training sample to obtain 

7x training samples. As [5], we map each object proposal 

(obtained via selective search method [29]) to the ground- 

truth instance with which it has maximum IoU overlap (if 

any) and label it as a positive for the matched ground-truth 

class if the IoU is at least 0.5. All other proposals are 

labeled as negative examples for all classes. For both 

RI-CNN model and FD-CNN model training, the learning 

rate is set to 0.01 for the last two layers and 0.0001 for the 

whole network fine-tuning, and decreases by 0.5 every 

10000 iterations. The parameters of Eqs. (7) and (16) are set 

to 1 =0.001λ , 2 =0.0005λ , 3 =0.005λ , and 4 =0.0005λ . In 

each SGD iteration of RI-CNN training, we randomly 

sample 10 positive examples over all classes and 10 negati- 

ve examples together with their corresponding 20×6=120 

rotated examples to construct a mini-batch of size 140. 

Following the R-CNN framework [5], we use our trained 

models to extract new CNN features from object proposals 

provided by selective search method [29], classify them 

with class-specific linear SVMs (trained using ground-truth 

positive samples and negative samples obtained via hard 

negative mining [30]), and then perform non-maximum 

suppression and bounding box regression [30].  

Results and comparison with state-of-the-arts. Table 

2 reports the detection performance of our improved CNN 

models including RI-CNN model, FD-CNN model, and 

their combination (RIFD-CNN model). These results are 

obtained based on the building block of R-CNN [5] with 

VGGNet [9] and bounding box regression (BB), which is 

therefore also our baseline method. Compared with the 

baseline method, from Table 2 we can observe 1) RI-CNN 

model only improves the performance slightly for mAP 

(+0.7%) averaged over 20 categories. This can be easily 

explained: different from aerial images (as illustrated in 

Figure 4) in which objects appear at arbitrary orientations, 

the objects in nature scene images are typically in an 

upright orientation due to the Earth’s gravity and so the 

orientation variations across images are generally small. 

For the improved object classes, rotations are mainly 

caused by aeroplane/bird flying and animal jumping. 2) 

FD-CNN model improves the performance for all 20 object 
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Model aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

R-CNN with VGGNet & BB 73.4 77.0 63.4 45.4 44.6 75.1 78.1 79.8 40.5 73.7 62.2 79.4 78.1 73.1 64.2 35.6 66.8 67.2 70.4 71.1 66.0

+ RI-CNN 75.6 77.1 65.6 45.1 45.2 74.9 78.1 81.2 40.7 73.5 62.8 81.2 79.6 74.5 66.1 35.1 67.0 66.9 70.1 73.3 66.7

+ FD-CNN 76.3 80.8 68.5 50.1 46.1 77.2 79.6 81.9 47.7 75.9 66.2 81.6 79.9 74.3 69.8 41.1 68.9 70.3 73.3 73.8 69.2

+ RIFD-CNN 77.4 80.8 70.7 49.9 47.2 77.6 79.9 82.7 48.6 76.1 67.1 81.9 80.2 74.6 71.9 40.9 69.5 70.7 73.5 74.2 69.8

Table 2. Detection performance on PASCAL VOC 2007 test set using our improved CNN models including RI-CNN model, FD-CNN 

model, RIFD-CNN model, and the baseline method of R-CNN [5] with VGGNet [9] and bounding box regression (BB). The entries with 

the best APs for each object category are bold-faced. 

 

Model aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

DPM v5 [30] 33.2 60.3 10.2 16.1 27.3 54.3 58.2 23.0 20.0 24.1 26.7 12.7 58.1 48.2 43.2 12.0 21.1 36.1 46.0 43.5 33.7

DPM ST [34] 23.8 58.2 10.5 8.5 27.1 50.4 52.0 7.3 19.2 22.8 18.1 8.0 55.9 44.8 32.4 13.3 15.9 22.8 46.2 44.9 29.1

DPM HSC [38] 32.2 58.3 11.5 16.3 30.6 49.9 54.8 23.5 21.5 27.7 34.0 13.7 58.1 51.6 39.9 12.4 23.5 34.4 47.4 45.2 34.3

CNN-DPM-BB [22] 50.9 64.4 43.4 29.8 40.3 56.9 58.6 46.3 33.3 40.5 47.3 43.4 65.2 60.5 42.2 31.4 35.2 54.5 61.6 58.6 48.2

E2E-DPM [23] 49.3 69.5 31.9 28.7 40.4 61.5 61.5 41.5 25.5 44.5 47.8 32.0 67.5 61.8 46.7 25.9 40.5 46.0 57.1 58.2 46.9

DP-DPM [20] 44.6 65.3 32.7 24.7 35.1 54.3 56.5 40.4 26.3 49.4 43.2 41.0 61.0 55.7 53.7 25.5 47.0 39.8 47.9 59.2 45.2

Sliding-window CNN [12] 64.1 72.3 62.8 44.0 44.2 66.4 72.5 67.7 35.2 68.9 35.9 62.7 69.0 65.7 65.8 36.2 60.1 50.3 63.2 66.0 58.6

R-CNN with AlexNet 64.2 69.7 50.0 41.9 32.0 62.6 71.0 60.7 32.7 58.5 46.5 56.1 60.6 66.8 54.2 31.5 52.8 48.9 57.9 64.7 54.2

R-CNN with VGGNet 71.6 73.5 58.1 42.2 39.4 70.7 76.0 74.5 38.7 71.0 56.9 74.5 67.9 69.6 59.3 35.7 62.1 64.0 66.5 71.2 62.2

R-CNN with AlexNet & BB 68.1 72.8 56.8 43.0 36.8 66.3 74.2 67.6 34.4 63.5 54.5 61.2 69.1 68.6 58.7 33.4 62.9 51.1 62.5 64.8 58.5

R-CNN with VGGNet & BB 73.4 77.0 63.4 45.4 44.6 75.1 78.1 79.8 40.5 73.7 62.2 79.4 78.1 73.1 64.2 35.6 66.8 67.2 70.4 71.1 66.0

+ FGS [17] 74.2 78.9 67.8 51.6 52.3 75.7 78.7 76.6 45.4 72.4 63.1 76.6 79.3 70.7 68.0 40.3 67.8 61.8 70.2 71.6 67.2

+ StructObj [17] 73.1 77.5 69.2 47.6 47.6 74.5 78.2 75.4 44.5 76.3 64.9 76.7 76.3 69.9 68.1 39.4 67.0 65.6 68.7 70.9 66.6

+ StructObj + FGS [17] 74.1 83.2 67.0 50.8 51.6 76.2 81.4 77.2 48.1 78.9 65.6 77.3 78.4 75.1 70.1 41.4 69.6 60.8 70.2 73.7 68.5

+ RIFD-CNN (ours) 77.4 80.8 70.7 49.9 47.2 77.6 79.9 82.7 48.6 76.1 67.1 81.9 80.2 74.6 71.9 40.9 69.5 70.7 73.5 74.2 69.8

+ RIFD-CNN + FGS (ours) 78.9 82.5 69.6 54.2 49.7 78.3 82.0 83.4 51.1 76.0 69.0 82.2 80.7 77.2 73.1 42.6 70.3 70.4 74.2 74.1 71.0

Table 3. Performance comparison of our method against other methods on PASCAL VOC 2007 test set. Rows 1-7 show sliding window 

detectors that employ different features. Rows 8-14 show results for R-CNN framework [5] with two different networks (AlexNet [2] and 

VGGNet [9]) and its improvement work [17] as a strong baseline. The last two rows report the results of our method and its combination 

with FGS. The entries with the best APs for each object category are bold-faced. 

 

categories. Especially for those classes with big within- 

class variability or large between-class similarity such as 

bird, boat, chair, plant, etc., we obtain significant performa- 

nce improvement. 3) Further improvement has been achie- 

ved by combing RI-CNN model and FD-CNN model 

together (RIFD-CNN model), boosting the baseline model 

[5] by 3.8% in mAP. The results demonstrate that our meth- 

od is effective for addressing the problems of object rotati- 

on, within-class variability, and between-class similarity. 

In Table 3, we compare our method with other published 

work [5, 12, 17, 20, 22, 23, 30, 34, 38] on PASCAL VOC 

2007 test set. Rows 1-7 show sliding window detectors that 

employ different features, where the first [30] uses only 

HOG, the next two [34, 38] use different feature learning 

approaches to augment or replace HOG, and the last four 

[12, 20, 22, 23] employ CNN features. Rows 8-14 show the 

results for R-CNN method [5] with two different networks 

(AlexNet [2] and VGGNet [9]) and its improvement work 

[17] as a strong baseline. The last two rows report the 

results of our method and its combination with fine-grained 

search (FGS) method [17]. For all methods, the fine-tuning/ 

training of the networks (if applicable) as well as the 

training of the detection SVMs were performed on VOC 

2007 train+val dataset. As shown in Table 3, we achieve 

state-of-the-art results for 17 out of 20 categories compared 

with the existing baseline methods [5, 17]. To be specific, 

our best result (RIFD-CNN + FGS) improves upon the best 

results of the baseline methods of [5] and [17] by 5.0% and 

2.5%, respectively, in terms of mAP, which demonstrates 

the effectiveness and superiority of our method. 

5. Conclusions 

In this paper, we proposed an effective method to boost 

the performance of object detection in R-CNN framework 

[5] by learning a rotation-invariant and Fisher discrimina- 

tive CNN model. The proposed method could effectively 

address the challenges of object rotation, within-class vari- 

ability, and between-class similarity. In the experiments, 

we have comprehensively evaluated the proposed method 

for object detection tasks on a public available aerial image 

dataset [33] and the PASCAL VOC 2007 dataset [28]. On 

both two datasets, we have achieved state-of-the-art 

performance compared with the existing baseline methods. 
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