高数笔记(十五):方向导数与梯度

这是一份作者考研期间整理的高数笔记,助其取得了数一146分的优异成绩。笔记涵盖了多元复合函数求导、隐函数偏导数、几何应用、无条件极值、条件极值(拉格朗日乘数法)、最值求法及二元函数的泰勒公式等核心内容,适合备考工科学硕的学生参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在前面

这是本人之前考研的高数手写笔记,工科学硕数一考了146(满分150),笔记有一定参考价值,欢迎大家收藏借鉴。
不喜勿看,作为个人笔记电子档留存。
数学不好是原罪——高等数学笔记(汇总版)
在这里插入图片描述在这里插入图片描述在这里插入图片描述高数笔记(十四):多元复合函数的求导法则,隐函数的偏导数,多元微分在几何上的应用
高数笔记(十六):无条件极值,条件极值(拉格朗日乘数法),最值求法,二元函数的泰勒公式

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xuuyann

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值