机器人运动学标定:基于公垂线模型的指数积标定——减少标定参数,避免过度约束

本文探讨了基于公垂线模型的六轴串联工业机器人的正向运动学建模及其误差分析方法。通过引入旋量理论,对运动学公式进行了线性化处理,并利用迭代最小二乘法实现了误差参数的精确辨识。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于旋量理论的公垂线变换研究——用公垂线思考误差模型的前提

在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

基于公垂线模型的六轴串联工业机器人实际正向运动学建模

在这里插入图片描述

基于公垂线模型的误差建模分析及参数辨识

在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

本文使用的指数映射关于旋量微分求解公式

在这里插入图片描述

对正运动学公式进行全微分线性化并选择误差参数,建立误差参数辨识模型

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基于迭代最小二乘法的误差参数辨识

在这里插入图片描述
在这里插入图片描述


参考文献

[1] 乔昱. 基于公垂线模型的串联机构运动学标定方法研究[D].华中科技大学,2017.
[2] 何锐波. 基于指数积公式的串联机构运动学标定方法研究[D].华中科技大学,2010.
[3] He R, Zhao Y, Yang S, et al. Kinematic-parameter identification for serial-robot calibration based on POE formula[J]. IEEE Transactions on Robotics, 2010, 26(3): 411-423.
[4] Yang X, Wu L, Li J, et al. A minimal kinematic model for serial robot calibration using POE formula[J]. Robotics and Computer-Integrated Manufacturing, 2014, 30(3): 326-334.
[5] 戴建生. 机构学与机器人学的几何基础与旋量代数[M]. 北京:高等教育出版社, 2014.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xuuyann

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值