第六届蓝桥杯大赛个人赛省赛(软件类)真题-Java语言B组

本文深入探讨了算法与数学在编程中的重要性,通过一系列实例展示了它们在解决问题中的应用,如计算几何、概率统计、图论等。内容涵盖加法变乘法、循环节长度、立方变自身等数学概念,以及递归、动态规划等算法思想。通过这些实例,读者可以提升在编程中运用数学和算法的能力。

目录

1.三角形面积

2.立方变自身

3.三羊祥瑞

4.循环节长度

5.九数组分数

6.加法变乘法

7.牌型种数

8.饮料换购

9.垒骰子

10.生命之树


1.三角形面积

如图所示。图中的所有小方格面积都是1。
那么,图中的三角形面积应该是多少呢?

请填写三角形的面积。不要填写任何多余内容或说明性文字。

 【解析】长方形的面积减去另外3个三角形的面积

public class Main {
	public static void main(String[] args) {
		System.out.println((8*8)-(8*2)/2-(8*4)/2-(4*6)/2);
	}
}

答案:28 

2.立方变自身

观察下面的现象,某个数字的立方,按位累加仍然等于自身。
1^3 = 1
8^3 = 512 5+1+2=8
17^3 = 4913 4+9+1+3=17

请你计算包括1,8,17在内,符合这个性质的正整数一共有多少个?

请填写该数字,不要填写任何多余的内容或说明性的文字。

【解析】X立方按位累加和不会超过99,
99的立方有6位,
按位累加和<6*9=54,
暴力枚举所有情况,
符合条件计数得解。

public class Main {
	public static int toNum(int x){
		int ans=0;
		while(x>0){
			ans+=(x%10);
			x/=10;
		}
		return ans;
		}
	public static void main(String[] args) {
		int count=0;
		for(int i=1;i<100;i++){//X立方按位累加和不会超过99,
			if(i==toNum(i*i*i)){//立方
				count++;
			}
		}
		System.out.println(count);
	}
}

答案: 6

3.三羊祥瑞

观察下面的加法算式:
在这里插入图片描述

其中,相同的汉字代表相同的数字,不同的汉字代表不同的数字。

请你填写“三羊献瑞”所代表的4位数字(答案唯一),不要填写任何多余内容。

【解析】设:
//三 羊 献 瑞 生 气 祥 辉
//[0] [1] [2] [3] [4] [5] [6] [7]
上下一一对应。
暴力枚举每一个位置1~9(去重),
符合条件即输出。

//三 羊 献 瑞 生 气 祥 辉
//[0][1][2][3][4][5][6][7]
public class Main {
	public static int arr[]=new int[8],count=0;
	
	public static void check(){
		if(arr[0]!=0&&((arr[6]+arr[0])*1000+(arr[1]+arr[3])*100+(arr[4]+arr[2])*10+arr[7]+arr[3])==
				(arr[0]*10000+arr[1]*1000+arr[4]*100+arr[3]*10+arr[5])){
				System.out.println(arr[0]+" "+arr[1]+" "+arr[2]+" "+arr[3]);
		}
	}
	
	public static void dfs(int k){
		if(k==8)check();
		else{
			for(int i=0;i<10;i++){
				if(contin(i))continue;
				else{
					arr[k]=i;
					dfs(k+1);
					arr[k]=10;
				}
			}
		}
	}
	public static boolean contin(int x){
		for(int i=0;i<8;i++)
			if(arr[i]==x)
				return true;
		return false;
	}

	public static void main(String[] args) {
		for(int i=0;i<8;i++)
			arr[i]=10;
		dfs(0);
	}
}

答案:1 0 8 5 

4.循环节长度

两个整数做除法,有时会产生循环小数,其循环部分称为:循环节。
比如,11/13=6=>0.846153846153… 其循环节为[846153] 共有6位。
下面的方法,可以求出循环节的长度。

请仔细阅读代码,并填写划线部分缺少的代码。

public static int f(int n, int m)
{
	n = n % m;	
	Vector v = new Vector();
	
	for(;;)
	{
		v.add(n);
		n *= 10;
		n = n % m;
		if(n==0) return 0;
		if(v.indexOf(n)>=0)  _________________________________ ;  //填空
	}
}

【解析】

V容器中一旦出现相同数字,即小数已经完成一次循环

(V容器中所有数字的数量-不循环数字的长度n)即为解

import java.util.Vector;

//注意,需要把V中的不循环数去除掉
//v.size()-v.indexOf(n);
public class Main {
	public static int f(int n, int m) {
		n = n % m;
		Vector v = new Vector();

		for (;;) {
			v.add(n);
			n *= 10;
			n = n % m;
			if (n == 0)
				return 0;
			if (v.indexOf(n) >= 0)
				return v.size()-v.indexOf(n);// _________________________________ ; //填空
		}
	}

	public static void main(String[] args) {
		System.out.println(f(1, 8));
		System.out.println(f(8, 3));
		System.out.println(f(11, 13));
		System.out.println(f(39, 190));
	}
}

答案: return v.size()-v.indexOf(n)

5.九数组分数

1,2,3…9 这九个数字组成一个分数,其值恰好为1/3,如何组法?

下面的程序实现了该功能,请填写划线部分缺失的代码。

public class Main {
	public static void test(int[] x)
	{
		int a = x[0]*1000 + x[1]*100 + x[2]*10 + x[3];
		int b = x[4]*10000 + x[5]*1000 + x[6]*100 + x[7]*10 + x[8];		
		if(a*3==b) System.out.println(a + " " + b);
	}
		
	public static void f(int[] x, int k)
	{
		if(k>=x.length){
			test(x);
			return;
		}
			
		for(int i=k; i<x.length; i++){
			{int t=x[k]; x[k]=x[i]; x[i]=t;}
			f(x,k+1);
			// 填空
		}
	}
		
	public static void main(String[] args)
	{
		int[] x = {1,2,3,4,5,6,7,8,9};		
		f(x,0);
	}
}

【解析】递归完了,回溯一下 

public class Main {
	public static void test(int[] x)
	{
		int a = x[0]*1000 + x[1]*100 + x[2]*10 + x[3];
		int b = x[4]*10000 + x[5]*1000 + x[6]*100 + x[7]*10 + x[8];		
		if(a*3==b) System.out.println(a + " " + b);
	}
		
	public static void f(int[] x, int k)
	{
		if(k>=x.length){
			test(x);
			return;
		}
			
		for(int i=k; i<x.length; i++){
			{int t=x[k]; x[k]=x[i]; x[i]=t;}
			f(x,k+1);
			{int t=x[k]; x[k]=x[i]; x[i]=t;}// 填空
		}
	}
		
	public static void main(String[] args)
	{
		int[] x = {1,2,3,4,5,6,7,8,9};		
		f(x,0);
	}
}

答案: {int t=x[k]; x[k]=x[i]; x[i]=t;}

6.加法变乘法

我们都知道:1+2+3+ … + 49 = 1225
现在要求你把其中两个不相邻的加号变成乘号,使得结果为2015

比如:
1+2+3+…+1011+12+…+2728+29+…+49 = 2015
就是符合要求的答案。

请你寻找另外一个可能的答案,并把位置靠前的那个乘号左边的数字提交(对于示例,就是提交10)。

注意:需要你提交的是一个整数,不要填写任何多余的内容。

【解析】暴力枚举两个位置,时间复杂度50*50

public class Main {
		public static int sum=1225;
		public static void findNum1(){
			for(int i=1;i<47;i++){
				sum-=(i+i+1);
				sum+=(i*(i+1));
				findNum2(i);
				sum-=(i*(i+1));
				sum+=(i+i+1);
			}
		}
		public static void findNum2(int k){
			for(int i=k+2;i<49;i++){
				sum-=(i+i+1);
				if(sum+(i*(i+1))==2015){
					System.out.println(k+" "+i);
				}
				sum+=(i+i+1);
			}
		}
		public static void main(String[] args) {
			findNum1();
		}
}

答案:16 

7.牌型种数

小明被劫持到X赌城,被迫与其他3人玩牌。
一副扑克牌(去掉大小王牌,共52张),均匀发给4个人,每个人13张。
这时,小明脑子里突然冒出一个问题:
如果不考虑花色,只考虑点数,也不考虑自己得到的牌的先后顺序,自己手里能拿到的初始牌型组合一共有多少种呢?

请填写该整数,不要填写任何多余的内容或说明文字。

【解析】从1开始递归到13结束,对应A,2,3,4…J,Q,K;
每次调用枚举0~4五种情况,对应没有当前牌,一张牌,两张牌,三张牌,四张牌
符合条件计数+1;递归结束得结果。 

public class Main {
	static int sum,u,cnt;//U:牌的类型(A,2~k)sum:牌的数量
	private static void dfs(int u)
	{
		if(sum > 13||u>13) return;//牌数>13,类型>13均可以return
		if(sum == 13) {
			cnt++;
			return;
		}
		for(int i=0;i<=4;i++) {
			sum+=i;
			dfs(u+1);//u递归层数
			sum-=i;
		}
	}
	public static void main(String[] args) {
		dfs(0);
		System.out.println(cnt);
	}

}

答案:3598180 

8.饮料换购

乐羊羊饮料厂正在举办一次促销优惠活动。乐羊羊C型饮料,凭3个瓶盖可以再换一瓶C型饮料,并且可以一直循环下去,但不允许赊账。

请你计算一下,如果小明不浪费瓶盖,尽量地参加活动,那么,对于他初始买入的n瓶饮料,最后他一共能得到多少瓶饮料。

输入:一个整数n,表示开始购买的饮料数量(0<n<10000)
输出:一个整数,表示实际得到的饮料数

例如:
用户输入:
100
程序应该输出:
149

用户输入:
101
程序应该输出:
151

资源约定:
峰值内存消耗(含虚拟机) < 256M;CPU消耗 < 1000ms

请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。

所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意:不要使用package语句。不要使用jdk1.7及以上版本的特性。
注意:主类的名字必须是:Main,否则按无效代码处理。

【解析】递归调用问题 

import java.util.Scanner;
public class Main {
	public static int f(int n,int cnt){
		if(n<3)return cnt;
		else return f(n-2,cnt+1);
	}
	public static void main(String[] args) {
		Scanner sc=new Scanner(System.in);
		int n=sc.nextInt();
		System.out.println(f(n,n));
	}
}

9.垒骰子

赌圣atm晚年迷恋上了垒骰子,就是把骰子一个垒在另一个上边,不能歪歪扭扭,要垒成方柱体。
经过长期观察,atm 发现了稳定骰子的奥秘:有些数字的面贴着会互相排斥!
我们先来规范一下骰子:1 的对面是 4,2 的对面是 5,3 的对面是 6。
假设有 m 组互斥现象,每组中的那两个数字的面紧贴在一起,骰子就不能稳定的垒起来。 atm想计算一下有多少种不同的可能的垒骰子方式。
两种垒骰子方式相同,当且仅当这两种方式中对应高度的骰子的对应数字的朝向都相同。
由于方案数可能过多,请输出模 10^9 + 7 的结果。

不要小看了 atm 的骰子数量哦~

「输入格式」
第一行两个整数 n m
n表示骰子数目
接下来 m 行,每行两个整数 a b ,表示 a 和 b 不能紧贴在一起。

「输出格式」
一行一个数,表示答案模 10^9 + 7 的结果。

「样例输入」
2 1
1 2

「样例输出」
544

「数据范围」
对于 30% 的数据:n <= 5
对于 60% 的数据:n <= 100
对于 100% 的数据:0 < n <= 10^9, m <= 36

资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 2000ms

import java.util.Scanner;
public class Main {
	static final int mod=1000000000+7;
		
	static long mypow(int x,int y) {
		long res=1;
		for(int i=1;i<=y;i++) {
			res*=x;
		}
		return res;
	}
		
	public static void main(String[] args) {
		Scanner reader=new Scanner(System.in);
		//n个骰子
		int n=reader.nextInt();
		int m=reader.nextInt();
		//对立面
		int [] op=new int[] {0,4,5,6,1,2,3};
		//m组互斥对
		boolean [][] confilct=new boolean[7][7];
		for(int i=0;i<m;i++) {
			int x=reader.nextInt();
			int y=reader.nextInt();
			confilct[x][y]=true;
			confilct[y][x]=true;
		}
		//dp[i][j] 表示第i层 该层朝上数字为j时的可行方案数
		//由图中的递推式可知本层方案数目只与上一层有关 故可以用两行的动态数组保存方案数
		int [][] dp=new int[2][7];
		for(int i=1;i<=6;i++) {
			dp[0][i]=1;
		}
		//迭代的层数	
		for(int i=1;i<n;i++) {
			//面朝上的数字
			for(int j=1;j<=6;j++) {
				for(int x=1;x<=6;x++) {
					if(confilct[j][ op[x] ]) continue;
					dp[ i%2 ][j]=(dp[ i%2 ][j]+dp[(i-1)%2 ][x]);
				}
			}
		}
		long ans=0;
		for(int i=1;i<=6;i++) {
			ans+=dp[(n-1)%2][i];
		}
		ans=mypow(4,n)*ans%mod;
		System.out.println(ans);	
	}
}

10.生命之树

在X森林里,上帝创建了生命之树。

他给每棵树的每个节点(叶子也称为一个节点)上,都标了一个整数,代表这个点的和谐值。
上帝要在这棵树内选出一个非空节点集S,使得对于S中的任意两个点a,b,都存在一个点列 {a, v1, v2, …, vk, b} 使得这个点列中的每个点都是S里面的元素,且序列中相邻两个点间有一条边相连。

在这个前提下,上帝要使得S中的点所对应的整数的和尽量大。
这个最大的和就是上帝给生命之树的评分。

经过atm的努力,他已经知道了上帝给每棵树上每个节点上的整数。但是由于 atm 不擅长计算,他不知道怎样有效的求评分。他需要你为他写一个程序来计算一棵树的分数。

「输入格式」
第一行一个整数 n 表示这棵树有 n 个节点。
第二行 n 个整数,依次表示每个节点的评分。
接下来 n-1 行,每行 2 个整数 u, v,表示存在一条 u 到 v 的边。由于这是一棵树,所以是不存在环的。

「输出格式」
输出一行一个数,表示上帝给这棵树的分数。

「样例输入」
5
1 -2 -3 4 5
4 2
3 1
1 2
2 5

「样例输出」
8

「数据范围」
对于 30% 的数据,n <= 10
对于 100% 的数据,0 < n <= 10^5, 每个节点的评分的绝对值不超过 10^6 。

资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 3000ms

【解析】已知条件是一棵树,要求一部分节点构成的子集,且子集各个点之间是联通的,就是说把原来的树删掉一部分子树(整体权重为负值),剩余的和就是答案 

import java.util.Scanner;
public class Main {
	    static int n;
	    static int[] v;
	    static int[][] arr;
	    static boolean[] vis;
	    static int max = 0;
	    public static void main(String[] args) {
	        Scanner in = new Scanner(System.in);
	        n = in.nextInt();
	        v = new int[n+1];
	        arr = new int[n+1][n+1];
	        vis = new boolean[n+1];
	        for (int i = 1; i <= n; i++) {
	            v[i] = in.nextInt();
	        }
	        for (int i = 1; i < n; i++) {
	            int a = in.nextInt();
	            int b = in.nextInt();
	            arr[a][b] = 1;
	            arr[b][a] = 1;
	        }
	        dfs(1);

	        System.out.println(max);
	    }
	    private static void dfs(int m) {
	        vis[m] = true;
	        for (int i = 1; i <= n; i++) {
	            if (vis[i] == false && arr[m][i] != 0) {
	                dfs(i);
	                if (v[m] < (v[m] + v[i])) {
	                    v[m] = v[m] +v[i];
	                }
	                max = Math.max(max, v[m]);
	            }
	        }
	    }
	}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

得闲喝茶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值