目录
1.三角形面积
如图所示。图中的所有小方格面积都是1。
那么,图中的三角形面积应该是多少呢?
请填写三角形的面积。不要填写任何多余内容或说明性文字。
【解析】长方形的面积减去另外3个三角形的面积
public class Main {
public static void main(String[] args) {
System.out.println((8*8)-(8*2)/2-(8*4)/2-(4*6)/2);
}
}
答案:28
2.立方变自身
观察下面的现象,某个数字的立方,按位累加仍然等于自身。
1^3 = 1
8^3 = 512 5+1+2=8
17^3 = 4913 4+9+1+3=17
…
请你计算包括1,8,17在内,符合这个性质的正整数一共有多少个?
请填写该数字,不要填写任何多余的内容或说明性的文字。
【解析】X立方按位累加和不会超过99,
99的立方有6位,
按位累加和<6*9=54,
暴力枚举所有情况,
符合条件计数得解。
public class Main {
public static int toNum(int x){
int ans=0;
while(x>0){
ans+=(x%10);
x/=10;
}
return ans;
}
public static void main(String[] args) {
int count=0;
for(int i=1;i<100;i++){//X立方按位累加和不会超过99,
if(i==toNum(i*i*i)){//立方
count++;
}
}
System.out.println(count);
}
}
答案: 6
3.三羊祥瑞
观察下面的加法算式:
其中,相同的汉字代表相同的数字,不同的汉字代表不同的数字。
请你填写“三羊献瑞”所代表的4位数字(答案唯一),不要填写任何多余内容。
【解析】设:
//三 羊 献 瑞 生 气 祥 辉
//[0] [1] [2] [3] [4] [5] [6] [7]
上下一一对应。
暴力枚举每一个位置1~9(去重),
符合条件即输出。
//三 羊 献 瑞 生 气 祥 辉
//[0][1][2][3][4][5][6][7]
public class Main {
public static int arr[]=new int[8],count=0;
public static void check(){
if(arr[0]!=0&&((arr[6]+arr[0])*1000+(arr[1]+arr[3])*100+(arr[4]+arr[2])*10+arr[7]+arr[3])==
(arr[0]*10000+arr[1]*1000+arr[4]*100+arr[3]*10+arr[5])){
System.out.println(arr[0]+" "+arr[1]+" "+arr[2]+" "+arr[3]);
}
}
public static void dfs(int k){
if(k==8)check();
else{
for(int i=0;i<10;i++){
if(contin(i))continue;
else{
arr[k]=i;
dfs(k+1);
arr[k]=10;
}
}
}
}
public static boolean contin(int x){
for(int i=0;i<8;i++)
if(arr[i]==x)
return true;
return false;
}
public static void main(String[] args) {
for(int i=0;i<8;i++)
arr[i]=10;
dfs(0);
}
}
答案:1 0 8 5
4.循环节长度
两个整数做除法,有时会产生循环小数,其循环部分称为:循环节。
比如,11/13=6=>0.846153846153… 其循环节为[846153] 共有6位。
下面的方法,可以求出循环节的长度。
请仔细阅读代码,并填写划线部分缺少的代码。
public static int f(int n, int m)
{
n = n % m;
Vector v = new Vector();
for(;;)
{
v.add(n);
n *= 10;
n = n % m;
if(n==0) return 0;
if(v.indexOf(n)>=0) _________________________________ ; //填空
}
}
【解析】
V容器中一旦出现相同数字,即小数已经完成一次循环
(V容器中所有数字的数量-不循环数字的长度n)即为解
import java.util.Vector;
//注意,需要把V中的不循环数去除掉
//v.size()-v.indexOf(n);
public class Main {
public static int f(int n, int m) {
n = n % m;
Vector v = new Vector();
for (;;) {
v.add(n);
n *= 10;
n = n % m;
if (n == 0)
return 0;
if (v.indexOf(n) >= 0)
return v.size()-v.indexOf(n);// _________________________________ ; //填空
}
}
public static void main(String[] args) {
System.out.println(f(1, 8));
System.out.println(f(8, 3));
System.out.println(f(11, 13));
System.out.println(f(39, 190));
}
}
答案: return v.size()-v.indexOf(n)
5.九数组分数
1,2,3…9 这九个数字组成一个分数,其值恰好为1/3,如何组法?
下面的程序实现了该功能,请填写划线部分缺失的代码。
public class Main {
public static void test(int[] x)
{
int a = x[0]*1000 + x[1]*100 + x[2]*10 + x[3];
int b = x[4]*10000 + x[5]*1000 + x[6]*100 + x[7]*10 + x[8];
if(a*3==b) System.out.println(a + " " + b);
}
public static void f(int[] x, int k)
{
if(k>=x.length){
test(x);
return;
}
for(int i=k; i<x.length; i++){
{int t=x[k]; x[k]=x[i]; x[i]=t;}
f(x,k+1);
// 填空
}
}
public static void main(String[] args)
{
int[] x = {1,2,3,4,5,6,7,8,9};
f(x,0);
}
}
【解析】递归完了,回溯一下
public class Main {
public static void test(int[] x)
{
int a = x[0]*1000 + x[1]*100 + x[2]*10 + x[3];
int b = x[4]*10000 + x[5]*1000 + x[6]*100 + x[7]*10 + x[8];
if(a*3==b) System.out.println(a + " " + b);
}
public static void f(int[] x, int k)
{
if(k>=x.length){
test(x);
return;
}
for(int i=k; i<x.length; i++){
{int t=x[k]; x[k]=x[i]; x[i]=t;}
f(x,k+1);
{int t=x[k]; x[k]=x[i]; x[i]=t;}// 填空
}
}
public static void main(String[] args)
{
int[] x = {1,2,3,4,5,6,7,8,9};
f(x,0);
}
}
答案: {int t=x[k]; x[k]=x[i]; x[i]=t;}
6.加法变乘法
我们都知道:1+2+3+ … + 49 = 1225
现在要求你把其中两个不相邻的加号变成乘号,使得结果为2015
比如:
1+2+3+…+1011+12+…+2728+29+…+49 = 2015
就是符合要求的答案。
请你寻找另外一个可能的答案,并把位置靠前的那个乘号左边的数字提交(对于示例,就是提交10)。
注意:需要你提交的是一个整数,不要填写任何多余的内容。
【解析】暴力枚举两个位置,时间复杂度50*50
public class Main {
public static int sum=1225;
public static void findNum1(){
for(int i=1;i<47;i++){
sum-=(i+i+1);
sum+=(i*(i+1));
findNum2(i);
sum-=(i*(i+1));
sum+=(i+i+1);
}
}
public static void findNum2(int k){
for(int i=k+2;i<49;i++){
sum-=(i+i+1);
if(sum+(i*(i+1))==2015){
System.out.println(k+" "+i);
}
sum+=(i+i+1);
}
}
public static void main(String[] args) {
findNum1();
}
}
答案:16
7.牌型种数
小明被劫持到X赌城,被迫与其他3人玩牌。
一副扑克牌(去掉大小王牌,共52张),均匀发给4个人,每个人13张。
这时,小明脑子里突然冒出一个问题:
如果不考虑花色,只考虑点数,也不考虑自己得到的牌的先后顺序,自己手里能拿到的初始牌型组合一共有多少种呢?
请填写该整数,不要填写任何多余的内容或说明文字。
【解析】从1开始递归到13结束,对应A,2,3,4…J,Q,K;
每次调用枚举0~4五种情况,对应没有当前牌,一张牌,两张牌,三张牌,四张牌
符合条件计数+1;递归结束得结果。
public class Main {
static int sum,u,cnt;//U:牌的类型(A,2~k)sum:牌的数量
private static void dfs(int u)
{
if(sum > 13||u>13) return;//牌数>13,类型>13均可以return
if(sum == 13) {
cnt++;
return;
}
for(int i=0;i<=4;i++) {
sum+=i;
dfs(u+1);//u递归层数
sum-=i;
}
}
public static void main(String[] args) {
dfs(0);
System.out.println(cnt);
}
}
答案:3598180
8.饮料换购
乐羊羊饮料厂正在举办一次促销优惠活动。乐羊羊C型饮料,凭3个瓶盖可以再换一瓶C型饮料,并且可以一直循环下去,但不允许赊账。
请你计算一下,如果小明不浪费瓶盖,尽量地参加活动,那么,对于他初始买入的n瓶饮料,最后他一共能得到多少瓶饮料。
输入:一个整数n,表示开始购买的饮料数量(0<n<10000)
输出:一个整数,表示实际得到的饮料数
例如:
用户输入:
100
程序应该输出:
149
用户输入:
101
程序应该输出:
151
资源约定:
峰值内存消耗(含虚拟机) < 256M;CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意:不要使用package语句。不要使用jdk1.7及以上版本的特性。
注意:主类的名字必须是:Main,否则按无效代码处理。
【解析】递归调用问题
import java.util.Scanner;
public class Main {
public static int f(int n,int cnt){
if(n<3)return cnt;
else return f(n-2,cnt+1);
}
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
System.out.println(f(n,n));
}
}
9.垒骰子
赌圣atm晚年迷恋上了垒骰子,就是把骰子一个垒在另一个上边,不能歪歪扭扭,要垒成方柱体。
经过长期观察,atm 发现了稳定骰子的奥秘:有些数字的面贴着会互相排斥!
我们先来规范一下骰子:1 的对面是 4,2 的对面是 5,3 的对面是 6。
假设有 m 组互斥现象,每组中的那两个数字的面紧贴在一起,骰子就不能稳定的垒起来。 atm想计算一下有多少种不同的可能的垒骰子方式。
两种垒骰子方式相同,当且仅当这两种方式中对应高度的骰子的对应数字的朝向都相同。
由于方案数可能过多,请输出模 10^9 + 7 的结果。
不要小看了 atm 的骰子数量哦~
「输入格式」
第一行两个整数 n m
n表示骰子数目
接下来 m 行,每行两个整数 a b ,表示 a 和 b 不能紧贴在一起。
「输出格式」
一行一个数,表示答案模 10^9 + 7 的结果。
「样例输入」
2 1
1 2
「样例输出」
544
「数据范围」
对于 30% 的数据:n <= 5
对于 60% 的数据:n <= 100
对于 100% 的数据:0 < n <= 10^9, m <= 36
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 2000ms
import java.util.Scanner;
public class Main {
static final int mod=1000000000+7;
static long mypow(int x,int y) {
long res=1;
for(int i=1;i<=y;i++) {
res*=x;
}
return res;
}
public static void main(String[] args) {
Scanner reader=new Scanner(System.in);
//n个骰子
int n=reader.nextInt();
int m=reader.nextInt();
//对立面
int [] op=new int[] {0,4,5,6,1,2,3};
//m组互斥对
boolean [][] confilct=new boolean[7][7];
for(int i=0;i<m;i++) {
int x=reader.nextInt();
int y=reader.nextInt();
confilct[x][y]=true;
confilct[y][x]=true;
}
//dp[i][j] 表示第i层 该层朝上数字为j时的可行方案数
//由图中的递推式可知本层方案数目只与上一层有关 故可以用两行的动态数组保存方案数
int [][] dp=new int[2][7];
for(int i=1;i<=6;i++) {
dp[0][i]=1;
}
//迭代的层数
for(int i=1;i<n;i++) {
//面朝上的数字
for(int j=1;j<=6;j++) {
for(int x=1;x<=6;x++) {
if(confilct[j][ op[x] ]) continue;
dp[ i%2 ][j]=(dp[ i%2 ][j]+dp[(i-1)%2 ][x]);
}
}
}
long ans=0;
for(int i=1;i<=6;i++) {
ans+=dp[(n-1)%2][i];
}
ans=mypow(4,n)*ans%mod;
System.out.println(ans);
}
}
10.生命之树
在X森林里,上帝创建了生命之树。
他给每棵树的每个节点(叶子也称为一个节点)上,都标了一个整数,代表这个点的和谐值。
上帝要在这棵树内选出一个非空节点集S,使得对于S中的任意两个点a,b,都存在一个点列 {a, v1, v2, …, vk, b} 使得这个点列中的每个点都是S里面的元素,且序列中相邻两个点间有一条边相连。
在这个前提下,上帝要使得S中的点所对应的整数的和尽量大。
这个最大的和就是上帝给生命之树的评分。
经过atm的努力,他已经知道了上帝给每棵树上每个节点上的整数。但是由于 atm 不擅长计算,他不知道怎样有效的求评分。他需要你为他写一个程序来计算一棵树的分数。
「输入格式」
第一行一个整数 n 表示这棵树有 n 个节点。
第二行 n 个整数,依次表示每个节点的评分。
接下来 n-1 行,每行 2 个整数 u, v,表示存在一条 u 到 v 的边。由于这是一棵树,所以是不存在环的。
「输出格式」
输出一行一个数,表示上帝给这棵树的分数。
「样例输入」
5
1 -2 -3 4 5
4 2
3 1
1 2
2 5
「样例输出」
8
「数据范围」
对于 30% 的数据,n <= 10
对于 100% 的数据,0 < n <= 10^5, 每个节点的评分的绝对值不超过 10^6 。
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 3000ms
【解析】已知条件是一棵树,要求一部分节点构成的子集,且子集各个点之间是联通的,就是说把原来的树删掉一部分子树(整体权重为负值),剩余的和就是答案
import java.util.Scanner;
public class Main {
static int n;
static int[] v;
static int[][] arr;
static boolean[] vis;
static int max = 0;
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
n = in.nextInt();
v = new int[n+1];
arr = new int[n+1][n+1];
vis = new boolean[n+1];
for (int i = 1; i <= n; i++) {
v[i] = in.nextInt();
}
for (int i = 1; i < n; i++) {
int a = in.nextInt();
int b = in.nextInt();
arr[a][b] = 1;
arr[b][a] = 1;
}
dfs(1);
System.out.println(max);
}
private static void dfs(int m) {
vis[m] = true;
for (int i = 1; i <= n; i++) {
if (vis[i] == false && arr[m][i] != 0) {
dfs(i);
if (v[m] < (v[m] + v[i])) {
v[m] = v[m] +v[i];
}
max = Math.max(max, v[m]);
}
}
}
}