Spring AI 之多模态

人类通过多模态数据输入并行处理知识。我们的学习方式和经验本质上都是多模态的——我们并非孤立地处理视觉、听觉或文本信息。

这与传统机器学习形成鲜明对比:过去的研究往往专注于开发单一模态的专用模型。例如,音频模型专攻文本转语音或语音转文本任务,计算机视觉模型则聚焦物体检测与分类等领域。

但新一代多模态大语言模型正在崛起。以OpenAI的GPT-4o、谷歌Vertex AI Gemini 1.5、Anthropic的Claude3为代表,以及开源界的Llama3.2、LLaVA和BakLLaVA等模型,现已具备接收文本、图像、音频和视频等多模态输入,并能融合这些信息生成文本响应的能力。

多模态大语言模型(LLM)功能使模型能够结合图像、音频或视频等其他模态处理和生成文本。

Spring AI 多模态支持

多模态(Multimodality)指模型能够同时理解并处理来自文本、图像、音频等多种数据源信息的能力。

Spring AI 消息 API 提供了完整的抽象层,全面支持多模态大语言模型。

用户消息(UserMessage)的content字段主要用于文本输入,而可选的media字段允许添加一个或多个不同模态的附加内容(如图像、音频和视频)。MimeType用于指定内容模态类型。根据所使用的LLM不同,Media数据字段可以是:

### 实现 Spring AI多模态输入特别是音频的处理 为了实现在 Spring AI 中集成多模态输入并特别关注于音频处理的功能,可以采用分阶段的方式构建应用程序。首先,理解什么是多模态API以及其工作原理对于开发人员来说至关重要[^2]。 #### 音频转文字模块设计 针对音频文件的处理,通常会先通过 Transcription (audio to text) Models 将语音转换成文本形式。OpenAI 提供了这样的模型来完成这项任务[^1]。一旦获得了文本表示之后,则能够更容易地与其他类型的输入(比如图像或者额外的文字描述)相结合来进行综合分析或响应生成。 ```java // 假设有一个名为 AudioToTextService 的服务类用于调用转录 API public class AudioProcessor { private final AudioToTextService audioToTextService; public String processAudioFile(String filePath){ try{ File file = new File(filePath); return audioToTextService.transcribe(file); // 返回转录后的文本字符串 } catch(Exception e){ throw new RuntimeException("Failed processing audio",e); } } } ``` #### 结合其他模式的数据处理逻辑 当涉及到更复杂的场景时,可能还需要考虑如何有效地将不同来源的信息融合在一起。例如,在某些情况下,除了接收用户的口头指令外,还可能会有来自视觉界面的选择或者其他交互方式产生的附加信息。此时就需要依赖于一个多模态框架的支持[^3]。 ```java // 组合多个感知渠道的结果以形成最终决策/输出 public class MultiModalInputHandler { private final ImageAnalyzer imageAnalyzer; private final TextGenerator textGenerator; public void handleInputs(List<Object> inputs){ StringBuilder combinedContext = new StringBuilder(); for(Object input : inputs){ if(input instanceof File && isImage((File)input)){ combinedContext.append(imageAnalyzer.analyze(((File)input)).getDescription()); }else if(input instanceof File){ // 默认认为是非图片即音频文件 combinedContext.append(new AudioProcessor().processAudioFile(((File)input).getPath())); } else { // 文本或其他简单对象可以直接加入上下文中 combinedContext.append(input.toString()); } } System.out.println(textGenerator.generateResponse(combinedContext.toString())); } } ``` 上述代码片段展示了在一个假设性的 `MultiModalInputHandler` 类里怎样去遍历各种类型的输入,并根据它们各自的特性选择合适的处理器进行解析最后再汇总起来作为整体语境的一部分传递给负责生成回应的部分。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

oscar999

送以玫瑰,手留余香

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值