【Android面试八股文】你能说说LRU算法的原理并简单实现一下LRU算法吗?


LruCache 是 Android 中提供的一个内存缓存类,使用 Least Recently Used (LRU) 算法来管理缓存中的对象。

LruCache 的主要目的是在内存使用达到指定限度时,自动移除最久未使用的缓存对象,从而确保内存不被过度占用。

LruCache 的底层实现结合了多种数据结构和算法,来高效地实现这一目标。

一、LRU简介

LRULeast Recently Used 的缩写,这种算法认为最近使用的数据是热门数据,下一次很大概率将会再次被使用。

而最近很少被使用的数据,很大概率下一次不再用到。

当缓存容量满的时候,优先淘汰最近很少使用的数据。

假设现在缓存内部数据如图所示:

在这里插入图片描述

这里我们将列表第一个节点称为头结点,最后一个节点为尾结点。

当调用缓存获取 key=1 的数据,LRU 算法需要将 1 这个节点移动到头结点,其余节点不变,如图所示。

<think>嗯,用户正在询问如何准备IT面试中的技术八股文,这是一个非常实际的问题。用户可能正在求职或考虑跳槽,面对技术面试感到压力,需要系统性的准备方法。从问题表述看,用户对"八股文"这个概念有一定了解,但需要具体指导。 用户提到的引用材料很有意思:引用[1]讨论了八股文面试中的争议性,引用[2]对比了中美面试差异,引用[3]则展示了具体的技术问题示例。这些明用户已经做过初步调研,现在需要实操建议。 准备技术八股文确实需要策略。首先应该建立知识框架,就像搭房子先建骨架。核心计算机科学基础包括算法数据结构、操作系统、网络这些硬核内容,还有特定语言和框架的应用能力。比如引用[3]里提到的Redis问题,就属于分布式系统范畴。 记忆方法很重要,死记硬背效果差。我建议采用"概念-原理-应用"三层记忆法:先理解概念本质(如TCP为什么可靠),再掌握实现原理(三次握手/滑动窗口),最后联系实际应用(如何调优网络性能)。这样形成的记忆链更牢固。 特别要注意的是,用户引用的材料提到北美重视算法和系统设计。这提示我们准备时要平衡"八股文"和实操能力。可以建议用户用LeetCode练习时,每做完题就思考对应的知识点,形成"解题-理论"的双向映射。 模拟面试环节不可或缺。用户可能忽略了行为问题(BQ)的准备,其实像亚马逊的LP问题、谷歌的设计轮都是关键环节。建议找同伴模拟时,专门设置"最失败项目""团队冲突"这类场景题。 最后要提醒避免过度依赖八股文。正如引用[1]质疑的,真实工作能力更重要。可以建议用户在掌握基础知识后,主动在项目中寻找应用场景,比如优化数据库时就联系Redis的持久化机制。 考虑到用户需要具体指引,我会在回复中结构化呈现准备路径,从知识梳理到实战演练给出可操作的步骤。特别要强调"理解优于背诵"的原则,毕竟面试官稍微深入追问就能检验出真实理解程度。</think>准备IT面试中的"技术八股文"需要系统性策略,结合知识梳理、深度理解和实战训练。以下是具体步骤: ### 一、构建知识框架(按优先级排序) 1. **计算机基础核心** - **算法与数据结构**:重点掌握时间/空间复杂度分析、排序算法(快排/归/堆排序)、树(B/B+/红黑树)、图(DFS/BFS/Dijkstra) *示例推导*:快速排序平均时间复杂度 $O(n \log n)$ 的证明基于递归树深度 $\log n$ 和每层比较 $O(n)$ - **操作系统**:进程/线程调度(调度算法)、内存管理(分页/分段/虚拟内存)、死锁(银行家算法) - **计算机网络**:TCP/IP协议栈(三次握手/四次挥手)、HTTP/HTTPS、DNS解析 2. **领域专项知识** - 数据库:事务ACID、索引原理(B+树)、Redis持久化(RDB/AOF)[^3] - 系统设计:CAP定理、负载均衡策略、缓存击穿/雪崩解决方案 - 编程语言:Java发包(ConcurrentHashMap原理)、Python GIL机制 ### 二、高效学习方法 1. **概念分层记忆法** ```mermaid graph LR A[基础定义] --> B[实现原理] B --> C[应用场景] C --> D[优化方案] 示例:Redis持久化 --> RDB快照原理 --> 适用备份场景 --> 混合持久化优化 ``` 2. **建立知识关联网** - 将LRU缓存算法(Leetcode 146)与Redis内存淘汰策略关联 - 将TCP拥塞控制与微服务熔断机制类比 ### 三、实战训练策略 1. **模拟面试循环** ```python # 模拟面试反馈改进模型 def interview_prep(topic): while knowledge_gap.exists(): record = mock_interview(topic) # 录制模拟面试 gap = analyze_gap(record, job_requirements) # 分析薄弱点 targeted_study(gap) # 针对性学习 update_cheat_sheet(gap.solution) # 更新速查笔记 ``` 2. **八股文转化技巧** - 当被问"Redis优缺点"时[^3]: **标准答** → **深度拓展** "读写性能好" → "异步IO+内存操作实现110,000次/s读,但受物理内存限制需SSD扩展" ### 四、避坑指南 1. **警惕过时内容** - MySQL默认引擎从MyISAM转向InnoDB(支持事务) - Python异步编程从回调到async/await演进 2. **平衡深度与广度** ```mermaid pie title 时间分配建议 “核心算法” : 35 “系统设计” : 25 “领域框架” : 20 “项目复盘” : 20 ``` ### 五、面试现场技巧 1. **问题拆解模板** ``` 面试题:如何设计高发秒杀系统? Step 1:流量削峰 → 消息队列缓冲 Step 2:库存一致 → Redis+Lua原子操作 Step 3:防作弊 → 令牌桶限流 ``` 2. **应对超纲问题** - 展示推理过程:"这个问题涉及分布式事务,虽然我不熟悉Seata框架,但根据2PC原理可推导..." > **关键原则**:技术八股文应是思考的起点而非终点。北美面试虽重算法(Coding)[^2],但国内大厂逐渐增加系统设计比重。建议每天2小时算法训练(LeetCode)+ 1小时设计题(如设计Twitter) + 30分钟基础复盘。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

字节卷动

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值