词袋模型和TF-IDF

本文介绍了词袋模型(BoW)和TF-IDF技术,这两种方法用于将文本转换为向量,以便机器理解。通过电影评论的例子,解释了BoW的基本思想和其缺点,以及TF-IDF如何通过考虑词频和逆文档频率来衡量单词的重要性。TF-IDF在机器学习模型中通常表现出更好的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者|PURVA HUILGOL 编译|VK 来源|Analytics Vidhya

机器理解文本的挑战

“语言是一种极好的交流媒介”

你和我很快就会明白那句话。但机器根本无法处理原始形式的文本数据。他们需要我们将文本分解成一种易于机器阅读的数字格式(自然语言处理背后的理念!)。

这就引入“词袋”(BoW)和TF-IDF。BoW和TF-IDF都是帮助我们将文本句子转换为向量的技术。

在这篇文章中,我将讨论“词袋”和TF-IDF。我们将使用一个直观和一般的例子来详细理解每个概念。

示例

我将用一个流行的例子来解释本文中的Bag of Words(BoW)和TF-IDF。

我们都喜欢看电影(不同程度)。在我决定看一部电影之前,我总是先看它的影评。我知道你们很多人也这么做!所以,我在这里用这个例子。

以下是关于某部恐怖电影的评论示例:

  • 点评一:This movie is very scary and long

  • 点评二:This movie is not scary and is slow

  • 点评三:This movie is spooky and good

你可以看到关于这部电影的一些对比评论,以及电影的长度和节奏。想象一下看一千篇这样的评论是多么枯燥。显然,我们可以从中汲取很多有趣的东西,并以此为基础来衡量电影的表现。

然而,正如我们在上面看到的,我们不能简单地把这些句子交给机器学习模型,让它告诉我们一篇评论是正面的还是负面的。我们需要执行某些文本预处理步骤。

“词袋”和TF-IDF就是两个这样做的例子。让我们详细了解一下。

从文本创建向量
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值