Pandas数据可视化的备忘录

本文详细介绍了如何使用Pandas进行数据可视化,包括直线图、面积图、直方图、条形图、饼图、箱线图、散点图和六边形等基本和高级图表的绘制方法。通过实例展示了如何利用Pandas简化数据帧列的绘图过程,以及如何通过调整参数以优化图表的外观。此外,还提到了散点矩阵、KDE图、平行坐标图和Bootstrap_plot等高级可视化技术,帮助数据科学家更好地理解和分析数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者|Rashida Nasrin Sucky 编译|VK 来源|Towards Data Science

我们使用python的pandas库主要用于数据分析中的数据操作,但我们也可以使用Pandas进行数据可视化。你甚至不需要为此导入Matplotlib库。

Pandas本身可以在后端使用Matplotlib并为你呈现可视化效果。它使得使用数据帧列绘制图变得非常容易。Pandas使用比Matplotlib更高级别的API。因此,它可以用更少的代码行来绘制绘图。

我将从使用随机数据从基本的绘图开始,然后转到更高级的带有真实数据集的绘图。

在本教程中,我将使用Jupyter Notebook环境。如果你没有安装,你可以简单地使用谷歌Colab Notebook。你甚至不需要在上面安装Pandas。它已经为我们安装好了。

如果你想安装一个Jupyter Notebook,那也是个好主意。

对于数据科学家来说,这是一个很好的软件包,而且是免费的。

安装pandas使用:

pip install pandas

或者在你的anaconda上

conda install pandas

这样就准备好了

pandas可视化

我们将从最基本的开始。

直线图

首先导入pandas。然后,让我们用pandas做一个基本的系列,画一个直线图。

import pandas as pd
a = pd.Series([40, 34, 30, 22, 28, 17, 19, 20, 13, 9, 15, 10, 7, 3])
a.plot()

最基本最简单的图准备好了!看,这是多么容易。我们可以改进一下。

我将补充:

更改一个图形大小,使图表更大,

更改的默认蓝色

显示标题

更改轴上这些数字的默认字体大小

a.plot(figsize=(8, 6), color='green', title = 'Line Plot', fontsize=12)

在本教程中,我们将学习更多的样式技巧。

面积图

我会用相同的数据a在这里画一个面积图,

我可以使用.plot方法并传递一个参数类型来指定我想要的绘图类型,例如:

a.plot(kind='area')

或者我可以这样写

a.plot.area()

我上面提到的两种方法都将创建此图:

面积图更有意义,而且当其中有多个变量时看起来也更好。所以,我将制作更多Series,制作一个数据框,并从中绘制一个面积图。

b = pd.Series([45, 22, 12, 9, 20, 34, 28, 19, 26, 38, 41, 24, 14, 32])
c = pd.Series([25, 38, 33, 38, 23, 12, 30, 37, 34, 22, 16, 24, 12, 9])
d = pd.DataFrame({'a':a, 'b': b, 'c': c})

让我们把这个数据框“d”画成面积图,

d.plot.area(figsize=(8, 6), title='Area Plot')

你不必接受这些默认颜色。让我们把这些颜色换一下,再加些样式。

d.plot.area(alpha=0.4, color=['coral', 'purple', 'lightgreen'],figsize=(8, 6), title='Area Plot', fontsize=12)

“alpha”参数为绘图添加了一些半透明的外观。

当我们有重叠的面积图、直方图或密集的散点图时,它似乎非常有用。

plot()可以执行11种类型的绘图:

  1. line
  2. area
  3. bar
内容概要:本文详细介绍了扫描分子定位显微镜(scanSMLM)技术及其在三维超分辨体积成像中的应用。scanSMLM通过电调透镜(ETL)实现快速轴向扫描,结合4f检测系统将不同焦平面的荧光信号聚焦到固定成像面,从而实现快速、大视场的三维超分辨成像。文章不仅涵盖了系统硬件的设计与实现,还提供了详细的软件代码实现,包括ETL控制、3D样本模拟、体积扫描、分子定位、3D重建和分子聚类分析等功能。此外,文章还比较了循环扫描与常规扫描模式,展示了前者在光漂白效应上的优势,并通过荧光珠校准、肌动蛋白丝、线粒体网络和流感A病毒血凝素(HA)蛋白聚类的三维成像实验,验证了系统的性能和应用潜力。最后,文章深入探讨了HA蛋白聚类与病毒感染的关系,模拟了24小时内HA聚类的动态变化,提供了从分子到细胞尺度的多尺度分析能力。 适合人群:具备生物学、物理学或工程学背景,对超分辨显微成像技术感兴趣的科研人员,尤其是从事细胞生物学、病毒学或光学成像研究的科学家和技术人员。 使用场景及目标:①理解和掌握scanSMLM技术的工作原理及其在三维超分辨成像中的应用;②学习如何通过Python代码实现完整的scanSMLM系统,包括硬件控制、图像采集、3D重建和数据分析;③应用于分子水平研究细胞内结构和动态过程,如病毒入侵机制、蛋白质聚类等。 其他说明:本文提供的代码不仅实现了scanSMLM系统的完整工作流程,还涵盖了多种超分辨成像技术的模拟和比较,如STED、GSDIM等。此外,文章还强调了系统在硬件改动小、成像速度快等方面的优势,为研究人员提供了从理论到实践的全面指导。
内容概要:本文详细介绍了基于Seggiani提出的渣层计算模型,针对Prenflo气流床气化炉中炉渣的积累和流动进行了模拟。模型不仅集成了三维代码以提供气化炉内部的温度和浓度分布,还探讨了操作条件变化对炉渣行为的影响。文章通过Python代码实现了模型的核心功能,包括炉渣粘度模型、流动速率计算、厚度更新、与三维模型的集成以及可视化展示。此外,还扩展了模型以考虑炉渣组成对特性的影响,并引入了Bingham流体模型,更精确地描述了含未溶解颗粒的熔渣流动。最后,通过实例展示了氧气-蒸汽流量增加2%时的动态响应,分析了温度、流动特性和渣层分布的变化。 适合人群:从事煤气化技术研究的专业人士、化工过程模拟工程师、以及对工业气化炉操作优化感兴趣的科研人员。 使用场景及目标:①评估不同操作条件下气化炉内炉渣的行为变化;②预测并优化气化炉的操作参数(如温度、氧煤比等),以防止炉渣堵塞;③为工业气化炉的设计和操作提供理论支持和技术指导。 其他说明:该模型的实现基于理论公式和经验数据,为确保模型准确性,实际应用中需要根据具体气化炉的数据进行参数校准。模型还考虑了多个物理场的耦合,包括质量、动量和能量守恒方程,能够模拟不同操作条件下的渣层演变。此外,提供了稳态求解器和动态模拟工具,可用于扰动测试和工业应用案例分析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值