作者|Behic Guven 编译|VK 来源|Towards Data Science
在这篇文章中,我将向你介绍一种称为监督学习的机器学习方法。我将向你展示如何使用Scikit-learn构建kNN分类器模型。
这将是一个实践演练,我们将能够在实践知识的同时学习。作为我们的分类器模型,我们将使用k-NN算法模型,这将在引言部分进行更多介绍。作为编程语言,我们将使用Python。
阅读本教程后,你将更好地了解深度学习和监督学习模型的工作原理。
目录
监督学习
库
了解数据
kNN分类器模型
过拟合与欠拟合
结论
监督学习
深度学习是一门科学,它使计算机能够在没有明确编程的情况下从数据中得出结论。比如学会预测电子邮件是否是垃圾邮件。另一个很好的例子是通过观察花的图片将它们分为不同的类别。
在监督学习中,数据分为两部分:特征和目标变量。任务是通过观察特征变量来预测目标变量。监督学习可用于两种不同的模型:分类和回归
当目标变量是分类数据集时,可以使用分类模型。
当目标变量是连续值时,使用回归模型。
库
在这一步中,我们将安装本教程所需的库。正如引言中提到深度学习lib库的主要知识库。除此之外,我们将安装两个简单的库,它们是NumPy和Matplotlib。使用PIP(python包管理器)可以很容易地安装库。
安装库
进入终端窗口,开始安装过程:
pip install scikit-learn
现在让我们安装其他两个库:
pip install numpy matplotlib
导入库
很完美!现在让我们将它们导入到我们的程序中,以便使用它们。我将在本教程中使用Jupyter Notebook。因此,我创建了一个新的Notebook并导入了以下库模块。