DeepMoji:机器学习模型分析情绪, 情感

DeepMoji是一个通过12亿条带表情的推文训练的模型,用于理解语言中的情感表达。利用迁移学习,它在多种情感相关的文本建模任务中表现出色。您可以在http://deepmoji.mit.edu尝试在线演示,或查看项目源代码以获取更多详情。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DeepMoji 是一个模型,接受12亿个带有表情的推文,以了解语言如何表达情绪。 通过转移学习,该模型可以在许多情感相关的文本建模任务上获得最先进的表现。

http://deepmoji.mit.edu 尝试我们的在线演示! 有关详细信息,请参阅论文,博文或常见问题。

项目地址:https://github.com/bfelbo/DeepMoji

机器学习:http://www.tensorflownews.com

DeepMoji is a model trained on 1.2 billion tweets with emojis to understand how language is used to express emotions. Through transfer learning the model can obtain state-of-the-art performance on many emotion-related text modeling tasks.

Try our online demo at http://deepmoji.mit.edu! See the paper, blog post or FAQ for more details.

Overview
deepmoji/ contains all the underlying code needed to convert a dataset to our vocabulary and use our model.
examples/ contains short code snippets showing how to convert a dataset to our vocabulary, load up the model and run it on that dataset.
scripts/ contains code for processing and analysing datasets to reproduce results in the paper.
model/ contains the pretrained model and vocabulary.
data/ contains raw and processed datasets that we include in this repository for testing.
tests/ contains unit tests for the codebase.
To start out with, have a look inside the examples/ directory. See score_texts_emojis.py for how to use DeepMoji to extract emoji predictions, encode_texts.py for how to convert text into 2304-dimensional emotional feature vectors or finetune_youtube_last.py for how to use the model for transfer learning on a new dataset.

Please consider citing our paper if you use our model or code (see below for citation).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值