ShaderJoy —— “Flow-based Difference-of-Gaussians“ 特效【GLSL】

本文介绍了ShaderJoy中的'Flow-based Difference-of-Gaussians'特效,通过GLSL实现。该特效利用Edge Tangent Field(ETF)构造边缘流场,通过迭代方法提取和增强图像中的线条,同时保持边缘连续性和抑制噪声。文章详细阐述了ETF的构造公式、迭代方式和线提取过程,展示了如何结合DoG滤波器提取并增强图像边缘。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

效果对比图

 

原图

 

基于 ETF 的 FDoG

 

基于各向异性的向量场的 FDoG

&n

### GMM在计算机视觉中的配准方法 高斯混合模型(Gaussian Mixture Model, GMM)是一种广泛应用于数据聚类和概率密度估计的方法,在图像配准领域也有重要应用。通过利用GMM的概率框架,可以有效地描述复杂的分布特性并完成点集之间的匹配。 #### 配准原理概述 基于GMM的配准时,通常会将一组点视为由多个高斯分量组成的混合分布。具体而言,目标函数可以通过最大化似然来优化参数,从而找到最佳变换矩阵使源点集与目标点集对齐[^1]。这种方法的核心在于定义一个联合概率分布,并通过迭代期望最大化(Expectation-Maximization, EM)算法更新模型参数直至收敛。 #### 实现细节 以下是基于GMM的配准过程的主要组成部分: 1. **初始化** 初始阶段需设定若干超参数,例如高斯分量的数量 \(k\) 和初始均值向量 \(\mu_i\)、协方差矩阵 \(\Sigma_i\) 及权重系数 \(\pi_i\)[^2]。这些初值的选择会影响最终结果的质量。 2. **EM算法执行** - E步:计算每个观测样本属于各个簇的概率; ```python import numpy as np def e_step(data_points, means, covariances, weights): likelihoods = [] for i in range(len(means)): prob_density = multivariate_normal.pdf( data_points, mean=means[i], cov=covariances[i]) likelihoods.append(weights[i]*prob_density) total_likelihood = sum(likelihoods) responsibilities = [l/total_likelihood for l in likelihoods] return responsibilities ``` - M步:重新估算新的均值、协方差及权重以提高整体拟合度; ```python def m_step(data_points, responsibilities): new_means = [] new_covariances = [] new_weights = [] num_clusters = len(responsibilities[0]) # Number of clusters (or Gaussians) N = len(data_points) # Total number of points for k in range(num_clusters): # For each Gaussian component... resp_k_sum = sum([r[k] for r in responsibilities]) mu_k = ( 1 / resp_k_sum * sum([ r[k] * point for point, r in zip(data_points, responsibilities)])) sigma_k = ( 1 / resp_k_sum * sum([ r[k] * np.outer(point-mu_k, point-mu_k) for point, r in zip(data_points, responsibilities)])) pi_k = resp_k_sum / N new_means.append(mu_k) new_covariances.append(sigma_k) new_weights.append(pi_k) return new_means, new_covariances, new_weights ``` 3. **刚体或仿射变换求解** 当前点云经过上述调整后,还需进一步寻找合适的几何变换关系使得两者尽可能重叠。此部分可借助奇异值分解(Singular Value Decomposition, SVD)技术快速获取最优旋转和平移矢量[^4]。 #### 应用场景扩展 除了传统的二维平面图形外,三维空间内的物体姿态估计同样适用此类策略。例如医学影像处理中常遇到CT/MRI扫描序列间的精确校正需求;又或者自动驾驶汽车感知模块里动态障碍物轨迹预测任务也离不开类似的理论支持[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ShaderJoy

您的打赏是我继续写博客的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值