在3D内容创作领域,复杂的建模任务常常面临一个核心挑战:如何准确识别和分解3D物体的完整结构,包括那些被遮挡或隐藏的部分。传统方法通常只能处理可见表面,而无法还原完整的部件结构,这极大地限制了动画制作、编辑、XR建模等高级应用。
HoloPart 是一款开源的 AI 工具,旨在解决这一难题。它不仅能够识别3D物体的可见部分,还能通过“脑补”技术还原被遮挡或隐藏的结构,并将物体拆解为语义完整的部件。例如,它可以将一把椅子自动拆分为“靠背、坐垫、椅腿”等独立部件,即使某些部件在原始模型中被完全遮挡。
本文将深入探讨 HoloPart 的核心技术、创新点、模型架构以及其广泛的应用场景。
问题定义:3D Amodal 部件分割
什么是 3D Amodal 部件分割?
Amodal 分割(Amodal Segmentation)是一种能够识别并重建物体完整形态的技术,包括被遮挡或隐藏的部分。传统的 3D 分割方法仅关注可见表面,而无法提供完整的部件信息,这使得它们在复杂场景中表现有限。
HoloPart 将 2D Amodal 分割的概念引入到 3D 领域,提出了 3D Amodal 部件分割(3D Part Amodal Segmentation),旨在:
- 分解物体为具有语义意义的完整部件;
- 还原被遮挡或隐藏的部分;
- 支持更高级的 3D 内容创作需求。